Document Type

Article

Publication Date

3-1979

Abstract

An intensive study of the zooplankton community of Mirror Lake, New Hampshire, was undertaken over a 3-yr period. Our objectives in the lake study have included measurements of a number of attributes of the zooplankton community that integrate structure and function at the ecosystem level; among these are dispersion, biomass, productivity, respiration, and nutrient cycling.

Eight species of rotifers and 3 species of cladocerans were successfully cultured. Generation time for planktonic rotifers was -8-10 days (170C). The effect of higher food levels on rotifers was to shorten generation time and to increase brood size. In cladocerans, high food levels caused an increase in length and brood size

. A curvilinear relationship existed between zooplankton community respiration and temperature in Mirror Lake. Mean monthly zooplankton community respiration ranged from 96.0 kg C/ha/mo in June of 1969 to a low of 20.5 kg C/ha/mo in April of 1970. Over a 3-yr period, respiration was 79.9% of assimilation.

The 0 to 4.5-m strata (;epilimnion) contributed 68.5% and 46.5% of the annual zooplankton production and biomass. Zooplankton community production ranged from 22.3 kg C/ha/yr to 29.3 kg C/ha/yr with a 3-yr mean of 25.2 kg C/ha/yr. The annual zooplankton biomass ranged from 1.4 to 2.6 kg C/ha with a 3-yr mean of 2.0 kg C/ha.

A linear relationship was found to exist between net phytoplankton and zooplankton production in various lakes of the world. Ecological efficiency apparently increases with the trophic status of the lake. It is recommended that the term ecological efficiency be refined to include both autochthonous and allochthonous inputs of reduced carbon into the lake.

Rotifers assume a major role in intrasystem nutrient cycling and energy transfer within the lake ecosystem. Of the total amount of P incorporated into the organic matter of zooplankton community each year, 33.5% is assimilated in rotifer tissue. The annual turnover rate of P by rotifers is 30.9 and is high compared to crustaceans (10.1).

Copepods comprise 55.4% of the total zooplankton biomass. However, the copepods, with their slow growth over an entire year, represent only 19.3% of the zooplankton production, while rotifers account for 39.8% of the zooplankton production annually in Mirror Lake. Also, evidence is presented that rotifers play a major role in energy transfer in lakes of varying trophic status (oligotrophic to eutrophic).

Citation/Publisher Attribution

"Copyright by the Ecological Society of America,"

Structure and Function of the Zooplankton Community of Mirror Lake, New Hampshire Joseph C. Makarewicz and Gene E. Likens Ecological Monographs , Vol. 49, No. 1 (Mar., 1979), pp. 109-127

Share

COinS