Program

Event Title

Dynamics of Triatomine Infestation in a Population of Houses

Location

Edwards Hall Lobby

Document Type

Poster Presentation (1 hour)

Description

Trypanosoma cruzi, is the causal agent and parasite of Chagas disease, a neglected tropical disease transmitted mainly by blood-sucking triatomine insects in Latin America. Because of the unavailability of a cure for Chagas disease, disease control relies on the control of the vector population. In this work, we developed deterministic and stochastic mathematical models for the dynamics of bug infestation in a community of houses. We used a Levins metapopulation approach in which houses are considered to be patches that can be in one of three states: empty, infested, or treated. First, we considered spatially implicit models for homogeneous and heterogeneous populations. We studied the effect of differences in housing quality in infestation dynamics and the effect of heterogeneity in the distribution of the houses. Then, we developed more realistic spatially explicit, agent-based, metapopulation models. The models were used to assess the effect of different control strategies on house infestation. The results show that spraying only bad houses is more beneficial than spraying the whole community while using the same treatment rate.

Start Date

20-4-2013 10:30 AM

Comments

Math, Sciences and Engineering Poster Session

This document is currently not available here.

Share

COinS
 
Apr 20th, 10:30 AM

Dynamics of Triatomine Infestation in a Population of Houses

Edwards Hall Lobby

Trypanosoma cruzi, is the causal agent and parasite of Chagas disease, a neglected tropical disease transmitted mainly by blood-sucking triatomine insects in Latin America. Because of the unavailability of a cure for Chagas disease, disease control relies on the control of the vector population. In this work, we developed deterministic and stochastic mathematical models for the dynamics of bug infestation in a community of houses. We used a Levins metapopulation approach in which houses are considered to be patches that can be in one of three states: empty, infested, or treated. First, we considered spatially implicit models for homogeneous and heterogeneous populations. We studied the effect of differences in housing quality in infestation dynamics and the effect of heterogeneity in the distribution of the houses. Then, we developed more realistic spatially explicit, agent-based, metapopulation models. The models were used to assess the effect of different control strategies on house infestation. The results show that spraying only bad houses is more beneficial than spraying the whole community while using the same treatment rate.