2006

Starter P Project Provides a Win-Win

Eleanor Jacobs

Follow this and additional works at: http://digitalcommons.brockport.edu/wr_news

Part of the Environmental Sciences Commons

Repository Citation

http://digitalcommons.brockport.edu/wr_news/8

This Article is brought to you for free and open access by the Studies on Water Resources of New York State and the Great Lakes at Digital Commons @Brockport. It has been accepted for inclusion in Articles and Newsletters by an authorized administrator of Digital Commons @Brockport. For more information, please contact lmyers@brockport.edu.
Dairy farmer John Maxwell is a believer. Based on soil tests and a demonstration plot located on his Geneseo, NY, dairy, Maxwell made a substantial reduction in starter phosphorus (P) fertilizer used for corn production.

At Maxwell Farms, rates were reduced from over 60 pounds of P₂O₅ per acre on all fields to 20 pounds on most fields. Actual rates are based on soil test P values. “We saved over $5,000 the first year, and we only grow about 250 acres of corn annually,” Maxwell said. “We have continued the lower rates and are not seeing any yield loss.”

Although this was a phosphorus project, the Maxwell’s and other cooperating farmers learned to make better use of soil tests and recycled nutrients. Nitrogen starter rates were reduced and are now based on manure rates and credits from sod crops in the rotation. Soil testing also helped the farms reduce potash applications. Other farmers have also saved thousands of dollars.

Farmers who base P application rates on soil test P levels and credit recycled nutrients can reduce fertilizer costs. They also lower the risk of P moving into surface and ground water. Farmers and those involved with water quality improvement see the win-win benefits.

Making better use of manure by reducing commercial fertilizer applications helps dairies to meet the requirements of their Concentrated Animal Feeding Operation (CAFO) permits, said Colleen Daly, a consultant with Rochester-based Agricultural Consulting Services (ACS). The consulting group has frequently collaborated with Cornell researchers and Extension educators on projects.

In response to the Starter P Project results, ACS eliminated phosphorus “altogether on fields testing very high, high and even some moderate for P, and we saw no negative effect on corn yields,” Daly said. ACS consultants have in some cases recommended low rates of in-furrow phosphorus with good results. “And it’s less expensive,” Daly said.

Daly has seen no reluctance on the part of farmers to reduce or eliminate P. “They don’t even want to use the in-furrow,” she says. “And they know they can be more flexible with manure.”

Extension leadership
Extension educators Nate Herendeen, Mike Stanyard and Nancy Glazier, with the Northwest New York Dairy, Livestock and Field Crop Extension/PRO-DAIRY team, worked with the Cornell Nutrient Management Spear Program (NMSP) staff to conduct demonstrations on reduced rates of starter P.

The statewide Starter P Project fit into the Extension team’s collaboration on a watershed project, funded through USDA and including the Maxwell dairy. “We were working on a project to reduce phosphorus in the Conesus Lake watershed, and the Starter P Project allowed us to tie the two projects together,” said Glazier, Extension technical associate.

The Conesus Lake Watershed Project brought more collaborators to the study of phosphorus in crop production and the environment. They were SUNY Geneseo and Brockport, the Rochester Institute of Technology, and the Livingston County Soil and Water Conservation District (SWCD).

The Northwest Extension team arranged demonstration sites in each of three years of the projects at Empire Farm Days in Seneca Falls, Batavia Crops Research Farm and Maxwell Farms. Summer field days were held for agriculture professionals, farmers and Extension workers. Hundreds of farmers viewed the plots at Empire Farm Days. The plots at Maxwell Farms were used as part of Ag Environmental Management training for Natural Resources Conservation Service (NRCS), SWCD and consultants.

“Just that John Maxwell made the comment on the money saved and the less fertilizer needed had more impact,” Glazier said. “When people, particularly other farmers, hear from a farmer about his real-world experience, they feel it’s easier to do the same on their farm. It’s a step beyond research.” Karl Czymmek concurs. The PRO-DAIRY specialist and a driving force in the statewide Starter
recommendations. They are blending starter formulations to meet needs based on soil tests. Farmers are applying at lower rates based on soil test P availability and crop response.

The requirement for Concentrated Animal Feeding Operation (CAFO)-sized farms to have nutrient management plans has improved implementation of reduced starter P rates and saved money for farmers, as John Maxwell shows.

“Phosphorus is recognized as an important nutrient for crops but in excess, it can be lost to streams and lakes and cause algae blooms,” Ketterings said. “In our field management, we try to supply enough P so plants can grow but not so much that it becomes an environmental problem. One way of doing that is to test soils for the P availability and only apply P fertilizer if it is likely to result in a yield or quality response.”

Collaboration was critical to bring together Cornell Starter P Project and the Conesus Lake Watershed Project to research best nutrient management practices, particularly related to phosphorus. About that collaboration between Cornell staff and the Extension team, Glazier said, “Working with Cornell researchers was helpful. It gave us another opportunity to work with the university and allowed us to get more research in the field on farms.”

From Daly’s perspective, there was a definite advantage for farmers because of her working with Cornell researchers and Extension. “It moved the farms to another level by getting them involved with Cornell,” she said.

From Ketterings’ perspective, Extension educators and producers “worked as a team towards a common goal: identification of P needs for optimum corn production. This network approach is what makes projects such as this a success. We generated a large database covering the great variety of soil types and growing seasons, and showed real life impact.”

By Eleanor Jacobs