2003

Flash-flood producing mesoscale convective systems: A statistical analysis of precipitation efficiency

Patrick S. Market
University of Missouri - Columbia

Scott M. Rochette
The College at Brockport, rochette@esc.brockport.edu

Follow this and additional works at: https://digitalcommons.brockport.edu/esc_facpub

Part of the Meteorology Commons

Repository Citation
https://digitalcommons.brockport.edu/esc_facpub/13

This Conference Proceeding is brought to you for free and open access by the Department of the Earth Sciences at Digital Commons @Brockport. It has been accepted for inclusion in Earth Sciences Faculty Publications by an authorized administrator of Digital Commons @Brockport. For more information, please contact kmyers@brockport.edu.
Flash-Flood Producing Mesoscale Convective Systems: A Statistical Analysis of Precipitation Efficiency

Patrick S. Market* and Scott M. Rochette**

*Department of Soil and Atmospheric Sciences
University of Missouri-Columbia
Columbia, MO 65211

**Department of the Earth Sciences
State University of New York, College at Brockport
Brockport, NY 14420

ABSTRACT

A quantitative evaluation of the precipitation efficiency (PE) of mesoscale convective systems (MCSs) is undertaken. The purpose of the study is to test the validity of the admittedly intuitive assumption that MCSs are associated with flash flooding are more efficient in terms of precipitation production than non-flash flood producers. PE computations are performed on a small sample of warm-season MCSs from the central U.S. Propagation characteristics of these MCSs are also examined to test the assumption that flash flood producers are generally regenerative and/or quasi-stationary in nature. The results reveal that while MCSs that yield flash flooding are indeed more efficient at processing ingested water vapor into (excessive) precipitation, the propagation characteristics of the MCSs are not as well correlated to flash flood occurrence.