The Chemical Analysis of Water and Sediments in the Genesee River Watershed Study

K. V. Krishnamurty
NYS Department of Health

M. M. Reddy
NYS Department of Health

Follow this and additional works at: http://digitalcommons.brockport.edu/wr_misc

Part of the Water Resource Management Commons

Repository Citation
http://digitalcommons.brockport.edu/wr_misc/46

This Government Document is brought to you for free and open access by the Studies on Water Resources of New York State and the Great Lakes at Digital Commons @Brockport. It has been accepted for inclusion in Government Documents by an authorized administrator of Digital Commons @Brockport. For more information, please contact kmyers@brockport.edu.
THE CHEMICAL ANALYSIS
OF WATER AND SEDIMENTS
IN THE GENESEE RIVER
WATERSHED STUDY

SUMMARY OF PROCEDURES

PREPARED BY

DR. K. V. KRISHNAMURTY
DR. M. M. REDDY

DECEMBER 1975

ENVIRONMENTAL HEALTH CENTER
DIVISION OF LABORATORIES AND RESEARCH
NEW YORK STATE DEPARTMENT OF HEALTH
This document describes the analytical procedures currently used at the Environmental Health Center, New York State Department of Health, for the chemical analysis of water and sediments in the Genesee River Watershed Study.

CONTENTS

DATA SHEETS

I. WATER COLUMN ANALYSIS (FLOW CHART)
 A. NUTRIENT ELEMENTS
 1. NITROGEN, Total particulate, Kjeldahl (Micro)
 2. NITROGEN, Kjeldahl (including NH₃)
 3. NITROGEN, Ammonia as N
 4. NITROGEN, Nitrite as N
 5. NITROGEN, Nitrate as N
 6. PHOSPHORUS, Total dissolved as P
 7. PHOSPHORUS, Total particulate as P
 8. PHOSPHORUS, Orthophosphate as P
 9. CARBON, Dissolved organic
 10. CARBON, Particulate organic
 11. CHLORIDES
 12. SILICON, as SiO₂
 13. SULFATE
 B. METALS
 1. ARSENIC
 2. CADMIUM
 3. CALCIUM
 4. CHROMIUM
II. SEDIMENT ANALYSIS (FLOW CHART)

A. NUTRIENT ELEMENTS
 1. NITROGEN, Total N in dry solids
 2. PHOSPHORUS, Total P in dry solids
 3. CARBON, Total C in dry solids
 4. CARBON, Total organic C in dry solids

B. METALS
 1. ARSENIC
 2. CALCIUM
 3. CADMIUM
 4. CHROMIUM
 5. COPPER
 6. IRON
 7. LEAD
 8. MAGNESIUM
 9. MANGANESE

5. COBALT
6. COPPER
7. IRON
8. LEAD
9. MAGNESIUM
10. MANGANESE
11. MERCURY
12. NICKEL
13. POTASSIUM
14. SODIUM
15. ZINC
10. MERCURY
11. NICKEL
12. POTASSIUM
13. SODIUM
14. ZINC

BIBLIOGRAPHY
Water Column Analysis

The methods outlined in this manual for water column analysis have been used during the past seven years in the New York State Department of Health eutrophication research program directed by Dr. G. W. Fuchs.

A flow diagram of the sample handling and preservation techniques for nutrients and trace metals is presented in Fig. 1. The sample is split into several subsamples as required. If dissolved and particulate analyses are desired, a 300-ml subsample is filtered in the field through a 0.45-μm Celite-coated Millipore filter. The filtrate and the resuspended residue are then analyzed for dissolved and particulate material respectively. Aliquots of the acidified subsample are used for trace metal analysis by flame atomic absorption spectrophotometry. Separate aliquots are used for the determination of arsenic and mercury.

The statistical information presented for each parameter was obtained in this laboratory during 1975.

The range reported refers to the actual working range used in this laboratory in routine analysis of large numbers of samples.

Minimum reportable concentration indicates the lowest result reported for an analytical determination. This value corresponds to an estimate of the result which is different from zero at the 95% confidence level. Results that are smaller than one-half the minimum reportable concentration are reported as "less than" values.
Significance threshold represents the smallest value reported with two significant figures.

For all procedures described here blanks and quality control check samples (either supplied by the National Bureau of Standards or secondary standards calibrated by this laboratory) are routinely analyzed. Periodic evaluation of procedures and computational methods is also done routinely.

Abbreviations used in this manual:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHA</td>
<td>American Public Health Association</td>
</tr>
<tr>
<td>EPA</td>
<td>(United States) Environmental Protection Agency</td>
</tr>
<tr>
<td>NYSDH</td>
<td>New York State Department of Health</td>
</tr>
<tr>
<td>RSD</td>
<td>Relative Standard Deviation</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
</tbody>
</table>
SEDIMENT ANALYSIS FLOW CHART

FIELD COLLECTION AND REFRIGERATION

SPLIT AND FROZEN

AIR DRIED room temp

WET SIEVED -2 mm

OVEN DRIED 105-110°C

SIEVED -100 mesh

EXTRACTION

TOTAL PHOSPHORUS

TOTAL PHOSPHORUS

METALS HNO₃-H₂O₂

NITROGEN

CARBON ANALYSIS

As Hg
S Se

NH₄OAc
(NH₄)₂C₂O₄
DIOTHIONITE CITRATE
NH₂OH

Mⁿ⁺ Fe Mn

PHOSPHORUS

NaOH
DIOTHIONITE CITRATE
HCl

C d Cr Cu Fe Pb Mn Ni Zn
Na K Ca Mg Si Al
Parameter: total particulate Kjeldahl (Micro) # 033409

Effective date: 3/1/75

A. SAMPLING:

COLLECTION: 3 liters using a depth-integrating sampler
CONTAINER: Polyethylene bottle
PRETREATMENT: 300-ml aliquot filtered through a prewashed 0.45-μm Millipore filter coated with Celite. Residue and Celite are resuspended in 10 ml of NH₃-free distilled water.

PRESERVATION: Resuspended residue frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. METHOD: A 2 ml slurry of the residue and Celite is digested with acid. Nitrogen is determined by the Indophenol blue method: NH₄ is reacted with phenol and hypochlorite in alkaline medium to form a blue complex.

INSTRUMENTATION: Bausch and Lomb 400 Spectrophotometer with digital printout

RANGE: 30-600 μg N/liter

QUANTITY ANALYZED: 2 ml (Celite slurry)

PRECISION: Not available

INTERFERENCES: 20

STATUS: NYSDH, APHA, EPA

REFERENCES: 2, 8, 16, 18, 20

C. DATA REPORT:

UNITS: μg N/liter

MINIMUM REPORTABLE CONCENTRATION: 30 μg N/liter

SIGNIFICANCE THRESHOLD: Not available

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center Division of Laboratories and Research New York State Department of Health
NITROGEN, total dissolved including NH₃, Kjeldahl

<table>
<thead>
<tr>
<th>Effective date</th>
<th>3/1/75</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. SAMPLING:</td>
<td></td>
</tr>
<tr>
<td>COLLECTION:</td>
<td>3 liters using a depth-integrating sampler</td>
</tr>
<tr>
<td>CONTAINER:</td>
<td>Polyethylene bottle</td>
</tr>
<tr>
<td>PRETREATMENT:</td>
<td>100-ml aliquot filtered through a prewashed 0.45-μm Millipore filter coated with Celite</td>
</tr>
<tr>
<td>PRESERVATION:</td>
<td>Filtered aliquot frozen at site in dry-ice chest</td>
</tr>
<tr>
<td>TRANSIT TIME:</td>
<td>< 2 days</td>
</tr>
<tr>
<td>B. METHOD:</td>
<td>A 25-ml aliquot of filtered water sample is digested with acid. Nitrogen is determined by the Indophenol blue method: NH₃ is reacted with phenol and hypochlorite in alkaline medium to form a blue complex.</td>
</tr>
<tr>
<td>INSTRUMENTATION:</td>
<td>Bausch and Lomb 400 Spectrophotometer with digital printout</td>
</tr>
<tr>
<td>RANGE:</td>
<td>0.05-0.50 mg N/liter</td>
</tr>
<tr>
<td>QUANTITY ANALYZED:</td>
<td>25 ml</td>
</tr>
<tr>
<td>PRECISION:</td>
<td>RSD 35% at 0.26 mg N/liter</td>
</tr>
<tr>
<td>INTERFERENCES:</td>
<td>20</td>
</tr>
<tr>
<td>STATUS:</td>
<td>NYSDH, APHA, EPA</td>
</tr>
<tr>
<td>REFERENCES:</td>
<td>2, 6, 8, 16, 18, 20</td>
</tr>
<tr>
<td>C. DATA REPORT:</td>
<td></td>
</tr>
<tr>
<td>UNITS:</td>
<td>mg N/liter</td>
</tr>
<tr>
<td>MINIMUM REPORTABLE CONCENTRATION:</td>
<td>0.05 mg N/liter</td>
</tr>
<tr>
<td>SIGNIFICANCE THRESHOLD:</td>
<td>0.10 mg N/liter</td>
</tr>
<tr>
<td>FORMAT:</td>
<td>Computer Line Printer Output with Magnetic Tape Storage</td>
</tr>
<tr>
<td>REPORTED BY:</td>
<td>Environmental Health Center Division of Laboratories and Research New York State Department of Health</td>
</tr>
</tbody>
</table>
NITROGEN, total dissolved including NH₃, Kjeldahl

Effective date 3/1/75

A. SAMPLING:

COLLECTION: 3 liters using a depth-integrating sampler

CONTAINER: Polyethylene bottle

PRETREATMENT: 100-ml aliquot filtered through a prewashed 0.45-μm Millipore filter coated with Celite

PRESERVATION: Filtered aliquot frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. METHOD: A 25-ml aliquot of filtered water sample is digested with acid. Nitrogen is determined by the Indophenol blue method: NH₃ is reacted with phenol and hypochlorite in alkaline medium to form a blue complex.

INSTRUMENTATION: Bausch and Lomb 400 Spectrophotometer with digital printout

RANGE: 0.05-0.50 mg N/liter

QUANTITY ANALYZED: 25 ml

PRECISION: RSD 35% at 0.26 mg N/liter

INTERFERENCES: 20

STATUS: NYSDH, APHA, EPA

REFERENCES: 2, 6, 8, 16, 18, 20

C. DATA REPORT:

UNITS: mg N/liter

MINIMUM REPORTABLE CONCENTRATION: 0.05 mg N/liter

SIGNIFICANCE THRESHOLD: 0.10 mg N/liter

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
NITROGEN, ammonia as N in water

Effective date 4/1/75

A. SAMPLING:

COLLECTION: 3 liters using a depth-integrating sampler

CONTAINER: Polyethylene bottle

PRETREATMENT: 300-ml aliquot filtered through a prewashed 0.45-µm Millipore filter

PRESERVATION: Filtered aliquot frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. METHOD: Indophenol.blue: NH₃ is reacted with phenol and hypochlorite in alkaline medium to form a blue complex. Nitroprusside is used as a catalyst to facilitate color development at 37.5°C.

INSTRUMENTATION: Technicon AutoAnalyzer

RANGE: 0.05-0.50 mg N/liter

QUANTITY ANALYZED: 4 ml

PRECISION: RSD 18% at 0.10 mg N/liter

INTERFERENCES: 20

STATUS: NYSDH, APHA, EPA

REFERENCES: 4, 8, 18, 19, 20

C. DATA REPORT:

UNITS: mg N/liter

MINIMUM REPORTABLE CONCENTRATION: 0.05 mg N/liter

SIGNIFICANCE THRESHOLD: 0.10 mg N/liter

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
NITROGEN, ammonia as N in water

Effective date 8/1/75

A. **SAMPLING:**

COLLECTION: 3 liters using a depth-integrating sampler

CONTAINER: Polyethylene bottle

PRETREATMENT: 300-ml aliquot filtered through a prewashed 0.45-μm Millipore filter

PRESERVATION: Filtered aliquot frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. **METHOD:**

Indophenol blue: NH₃ is reacted with phenol and hypochlorite in alkaline medium to form a blue complex. Nitroprusside is used as a catalyst to facilitate color development at 37.5°C.

INSTRUMENTATION: Technicon AutoAnalyzer

RANGE: 0.005 - 0.1 mg N/liter

QUANTITY ANALYZED: 4 ml

PRECISION: RSD 19% at 0.047 mg N/liter
 10% at 0.090 mg N/liter

INTERFERENCES: 20

STATUS: NYSDH, APHA, EPA

REFERENCES: 4, 8, 18, 19, 20

C. **DATA REPORT:**

UNITS: mg N/liter

MINIMUM REPORTABLE CONCENTRATION: 0.005 mg N/liter

SIGNIFICANCE THRESHOLD: 0.01 mg N/liter

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
nitrate as N in water

Date: 3/1/75

Sampling:

Collection: 3 liters using a depth-integrating sampler

Container: Polyethylene bottle

Pretreatment: 300-ml aliquot filtered through a prewashed 0.45 μm Millipore filter

Preservation: Filtered aliquot frozen at site in dry-ice chest

Transit Time: < 2 days

Method: Nitrate passed through a 'Cd-Cu Reductor' is reduced to nitrite which is reacted with sulfanilamide. The diazo compound is coupled with 1-naphthyléthylene diamine to yield a highly colored azo dye. Its color intensity is measured spectrophotometrically.

Instrumentation: Technicon AutoAnalyzer

Range: 0.2-2.5 mg N/liter

Quantity Analyzed: 4 ml

Precision: RSD 3.1% at 0.65 mg N/liter
2.7% at 1.9 mg N/liter

Interferences: 20

Status: NYSDH, APHA, EPA

References: 4, 8, 20, 21

Data Report:

Units: mg N/liter

Minimum Reportable Concentration: 0.2 mg N/liter

Significance Threshold: 1.0 mg N/liter

Format: Computer Line Printer Output with Magnetic Tape Storage

Reported By: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
NITROGEN, nitrate as N in water

Effective date 8/1/75

A. SAMPLING:

COLLECTION: 3 liters using a depth-integrating sampler

CONTAINER: Polyethylene bottle

PRÉTREATMENT: 300-ml aliquot filtered through a prewashed 0.45 μm Millipore filter

PRESERVATION: Filtered aliquot frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. METHOD: Nitrate passed through a 'Cd-Cu Reductor' is reduced to nitrite which is reacted with sulfanilamide. The diazo compound is coupled with 1-naphthylethylene diamine to yield a highly colored azo dye. Its color intensity is measured spectrophotometrically.

INSTRUMENTATION: Technicon AutoAnalyzer

RANGE: 0.03-0.7 mg N/liter

QUANTITY ANALYZED: 4 ml

PRECISION: RSD 18% at 0.067 mg N/liter

8.3% at 0.25 mg N/liter

INTERFERENCES: 20

STATUS: NYSDH, APHA, EPA

REFERENCES: 4, 8, 20, 21

C. DATA REPORT:

UNITS: mg N/liter

MINIMUM REPORTABLE CONCENTRATION: 0.03 mg N/liter

SIGNIFICANCE THRESHOLD: 0.1 mg N/liter

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
Effective date 3/1/75

A. SAMPLING:

COLLECTION: 3 liters using a depth-integrating sampler
CONTAINER: Polyethylene bottle
PRETREATMENT: 300-ml aliquot filtered through a prewashed 0.45-μm Millipore filter coated with Celite
PRESERVATION: Filtered aliquot frozen at site in dry-ice chest
TRANSIT TIME: < 2 days

B. METHOD: K₂S₂O₉ in acid medium oxidizes organic phosphorus to orthophosphate. The orthophosphate is converted to phosphomolybdate and reduced to molybdenum blue by adding ascorbic acid. The intensity of blue color is measured spectrophotometrically.

INSTRUMENTATION: Bausch and Lomb Spectrophotometer with digital printout
RANGE: 0.002-0.100 mg P/liter
QUANTITY ANALYZED: 50 ml
PRECISION: RSD 9.3% at 0.021 mg/l
INTERFERENCES 20
STATUS: NYSDH, APHA, EPA
REFERENCES: 7, 8, 17, 20

C. DATA REPORT:

UNITS: mg P/liter
MINIMUM REPORTABLE CONCENTRATION: 0.002 mg P/liter
SIGNIFICANCE THRESHOLD: 0.01 mg P/liter
FORMAT: Computer Line Printer Output with Magnetic Tape Storage
REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
PHOSPHORUS, total particulate as P

PARAMETER

107001

Effective date 3/1/75

A. SAMPLING:

COLLECTION: 3 liters using a depth-integrating sampler

CONTAINER: Polyethylene bottle

PRETREATMENT: 300-ml aliquot filtered through a prewashed 0.45-μm Millipore filter coated with Celite. Residue and Celite are resuspended in 10 ml of phosphate-free distilled water.

PRESERVATION: Resuspended residue frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. METHOD: A 4-ml slurry of the residue and Celite is digested with alkaline K₂S₂O₈. The orthophosphate is converted to phosphomolybdic acid which is reduced to molybdenum blue by ascorbic acid. The intensity of blue color is measured spectrophotometrically.

INSTRUMENTATION: Bausch and Lomb Spectrophotometer with Digital Printout

RANGE: 0.002-0.10 mg P/liter

QUANTITY ANALYZED: 4 ml

PRECISION: RSD 14.9% at 0.20 mg P/liter

INTERFERENCES: 20

STATUS: NYSDH, APHA, EPA

REFERENCES: 7, 8, 9, 17, 20

C. DATA REPORT:

UNITS: mg P/liter

MINIMUM REPORTABLE CONCENTRATION: 0.002 mg P/liter

SIGNIFICANCE THRESHOLD: 0.01 mg P/liter

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
PHOSPHORUS, orthophosphates as P in water

Effective date 3/1/75

A. SAMPLING:

COLLECTION: 3 liters using a depth-integrating sampler

CONTAINER: Polyethylene bottle

PRETREATMENT: 300-ml aliquot filtered through a prewashed 0.45-µm Millipore filter

PRESERVATION: Filtered aliquot frozen at site in dry-ice chest

TRANSIT TIME: < 2 days.

B. METHOD: Orthophosphate is converted to phosphomolybdate and molybdate reduced to molybdenum blue with ascorbic acid. The intensity of blue color is measured spectrophotometrically.

INSTRUMENTATION: Bausch and Lomb Spectrophotometer with Digital Printout

RANGE: 0.002-0.100 mg P/liter

QUANTITY ANALYZED: 5 ml (Celite slurry)

PRECISION: RSD 4.8% at 0.025 mg P/liter

14.6% at 0.013 mg P/liter

INTERFERENCES: 20

STATUS: NYSDH, APHA, EPA

REFERENCES: 8, 17, 20

C. DATA REPORT:

UNITS: mg P/liter

MINIMUM REPORTABLE CONCENTRATION: 0.002 mg P/liter

SIGNIFICANCE THRESHOLD: 0.010 mg P/liter

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
CARBON, dissolved organic

Effective date 3/24/75

A. SAMPLING:

COLLECTION: 3 liters using a depth-integrating sampler

CONTAINER: Polyethylene bottle

PRETREATMENT: 300-ml aliquot filtered through a prewashed 0.45-μm Millipore filter coated with Celite

PRESERVATION: Filtered aliquot frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

METHOD: Organic carbon in the filtered sample is oxidized with K₂S₂O₈ at 175°C and 8 Kg/cm² pressure. The CO₂ produced is determined by infrared measurement.

INSTRUMENTATION: Carbon Analyzer - Oceanography International Corp.

RANGE: 1-40 mg C/liter

QUANTITY ANALYZED: 5 ml

PRECISION: RSD 6% at 7.9 mg/liter

INTERFERENCES: 10

STATUS: EPA

REFERENCES: 5, 8, 10

C. DATA REPORT:

UNITS: mg C/liter

MINIMUM REPORTABLE CONCENTRATION: 1 mg C/liter

SIGNIFICANCE THRESHOLD: 1 mg C/liter

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
CARBON, particulate organic

Effective date 3/24/75

A. SAMPLING:

COLLECTION: 3 liters using a depth-integrating sampler

CONTAINER: Polypropylene bottle

PRETREATMENT: 300-ml aliquot filtered through a prewashed 0.45-µm Millipore filter coated with Celite. Residue and Celite are resuspended in 10 ml of CO₂-free distilled water.

PRESERVATION: Resuspended residue frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. METHOD: A 1-ml slurry of the residue and Celite is oxidized with K₂S₂O₈ at 175°C and 8 Kg/cm² pressure. This is followed by infrared determination of the CO₂ produced.

INSTRUMENTATION: Carbon Analyzer - Oceanography International Corp.

RANGE: 0.13-6.0 mg C/liter

QUANTITY ANALYZED: 1 ml (Celite slurry)

PRECISION: RSD 14% at 1.2 mg C/liter
 27% at 0.9 mg C/liter

INTERFERENCES: 10

STATUS: EPA

REFERENCES: 5, 8, 10

C. DATA REPORT:

UNITS: mg C/liter

MINIMUM REPORTABLE CONCENTRATION: 0.13 mg C/liter

SIGNIFICANCE THRESHOLD: Not available

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center Division of Laboratories and Research New York State Department of Health
Effective date 3/1/75

A. **SAMPLING:**

COLLECTION: 3 liters using a depth-integrating sampler

CONTAINER: Polyethylene bottle

PRETREATMENT: 300-ml aliquot filtered through 0.45-μm Millipore filter

PRESERVATION: Filtered aliquot frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. **METHOD:** Thiocyanate (SCN⁻) ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form un-ionized HgCl₂. In presence of ferric ion, the liberated SCN⁻ forms a deep red complex in concentration proportional to the original Cl⁻ concentration.

INSTRUMENTATION: Technicon AutoAnalyzer

RANGE: 3-50 mg Cl⁻/liter

QUANTITY ANALYZED: 4 ml

PRECISION: RSD 2.3% at 8.3 mg Cl⁻/liter 2.9% at 38 mg Cl⁻/liter

INTERFERENCES: 8

STATUS: EPA

REFERENCES: 1, 4, 8

C. **DATA REPORT:**

UNITS: mg Cl⁻/liter

MINIMUM REPORTABLE CONCENTRATION: 3 mg Cl⁻/liter

SIGNIFICANCE THRESHOLD: 10 mg Cl⁻/liter

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
Effective date 3/1/75

A. SAMPLING:

COLLECTION: 3 liters using a depth-integrating sampler
CONTAINER: Polyethylene bottle
PRETREATMENT: None

PRESERVATION: 100-ml aliquot frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. METHOD: SiO₂ reacts with ammonium molybdate at pH 1.2 to form yellow molybdosilicic acid. This is reduced by amino-naphthsulfonic acid to heteropoly blue which is measured spectrophotometrically.

INSTRUMENTATION: Bausch and Lomb 400 Spectrophotometer

RANGE: 0.2 - 2 mg SiO₂/liter

QUANTITY ANALYZED: 10 ml

PRECISION: RSD 73% at 0.3 mg SiO₂/liter
40% at 0.6 mg SiO₂/liter

INTERFERENCES: 20

STATUS: APHA, EPA

REFERENCES: 8, 20

C. DATA REPORT:

UNITS: mg SiO₂/liter

MINIMUM REPORTABLE CONCENTRATION: 0.2 mg SiO₂/liter

SIGNIFICANCE THRESHOLD: 1.0 mg SiO₂/liter

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
Effective date 3/1/75

A. SAMPLING:

COLLECTION: 3 liters using a depth-integrating sampler
CONTAINER: Polyethylene bottle
PRETREATMENT: None

PRESERVATION: 100-ml aliquot frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. METHOD: The reagent is equimolar BaCl₂ and MTB (methyl thymol blue)
 By pH-control the Ba²⁺-indicator chelate is prevented from forming at first. After sufficient time is allowed for
 the precipitation of BaSO₄ the solution is made basic and the uncombined MTB is determined spectrophotometrically.

INSTRUMENTATION: Technicon AutoAnalyzer

RANGE: 2-30 mg SO₄²⁻/liter
QUANTITY ANALYZED: 4 ml
PRECISION: RSD 3% at 30 mg SO₄²⁻/liter
 8% at 7.6 mg SO₄²⁻/liter
INTERFERENCES: 14
STATUS: Experimental
REFERENCES: 14

C. DATA REPORT:

UNITS: mg SO₄²⁻/liter
MINIMUM REPORTABLE CONCENTRATION: 2 mg SO₄²⁻/liter
SIGNIFICANCE THRESHOLD: 10 mg SO₄²⁻/liter
FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
ARSENIC in water
PARAMETER
009301

Effective date 3/1/75
A. SAMPLING:
COLLECTION: 1-4 liters using a depth-integrating sampler
CONTAINER: Polyethylene bottle
PRETREATMENT: 5 ml conc HNO₃ added per liter of sample

PRESERVATION: Aliquot frozen at site in dry-ice chest
TRANSIT TIME: < 2 days
B. METHOD: Arsenic is reduced to AsH₃ by zinc and absorbed in a pyridine solution of Ag-diethyldithiocarbamate to yield a red complex. Its color intensity is measured spectrophotometrically. Predigestion is required if water sample is turbid or preserved by HNO₃.

INSTRUMENTATION: Bausch and Lomb Spectrophotometer with Digital Printout
RANGE: 0.02-0.15 mg As/liter
QUANTITY ANALYZED: 100 ml
PRECISION: RSD 16.9% at 0.16 mg As/liter
INTERFERENCES: 20
STATUS: APHA, EPA, USGS
REFERENCES: 8, 11, 20, 22
C. DATA REPORT:
UNITS: mg As/liter
MINIMUM REPORTABLE CONCENTRATION: 0.02 mg As/liter
SIGNIFICANCE THRESHOLD: 0.1 mg As/liter
FORMAT: Computer Line Printer Output with Magnetic Tape Storage
REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
CADMIUM in water

PARAMETER # 009701

Effective date 6/11/75

A. **SAMPLING:**

COLLECTION: 1-4 liters using a depth-integrating sampler

CONTAINER: Polyethylene bottle

PRETREATMENT: 5 ml conc HNO₃ added per liter of sample

PRESERVATION: Aliquot frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. **METHOD:** Atomic absorption (228.8 nm)

INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

RANGE: 0.02-0.5 mg Cd/liter

QUANTITY ANALYZED: 5 ml

PRECISION: Not available

INTERFERENCES: 23

STATUS: USGS, EPA

REFERENCES: 23

C. **DATA REPORT:**

UNITS: mg Cd/liter

MINIMUM REPORTABLE CONCENTRATION: 0.02 mg Cd/liter

SIGNIFICANCE THRESHOLD: 0.1 mg Cd/liter

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
CALCIUM in water

Effective date 3/1/75

A. SAMPLING:

COLLECTION: 1-4 liters using a depth-integrating sampler
CONTAINER: Polyethylene bottle
PRETREATMENT: 5 ml conc HNO₃ added per liter of sample

PRESERVATION: Aliquot frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. METHOD: Atomic absorption (422.7 nm)

INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

RANGE: 0.5-30 mg Ca/liter

QUANTITY ANALYZED: 5 ml

PRECISION: RSD 12% at 30 mg Ca/liter
INTERFERENCES: 8
STATUS: USGS, EPA
REFERENCES: 8, 22, 23

C. DATA REPORT:

UNITS: mg Ca/liter

MINIMUM REPORTABLE CONCENTRATION: 0.5 mg Ca/liter

SIGNIFICANCE THRESHOLD: 1.0 mg Ca/liter

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
CHROMIUM in water

Effective date 3/1/75

A. SAMPLING:
 COLLECTION: 1-4 liters using a depth-integrating sampler
 CONTAINER: Polyethylene bottle
 PRETREATMENT: 5 ml conc HNO₃ added per liter of sample

 PRESERVATION: Aliquot frozen at site in dry-ice chest

 TRANSIT TIME: < 2 days

B. METHOD: Atomic absorption (357.9 nm)

 INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer
 RANGE: 0.1-1.0 mg Cr/liter
 QUANTITY ANALYZED: 5 ml
 PRECISION: Not available
 INTERFERENCES: 8
 STATUS: USGS
 REFERENCES: 8, 22, 23

C. DATA REPORT:
 UNITS: mg Cr/liter
 MINIMUM REPORTABLE CONCENTRATION: 0.1 mg Cr/liter
 SIGNIFICANCE THRESHOLD: 1.0 mg Cr/liter
 FORMAT: Computer Line Printer Output with Magnetic Tape Storage
 REPORTED BY: Environmental Health Center
 Division of Laboratories and Research
 New York State Department of Health
COBALT in water

Effective date 3/1/75

A. SAMPLING:

COLLECTION: 1-4 liters using a depth-integrating sampler
CONTAINER: Polyethylene bottle
PRETREATMENT: 5 ml conc HNO₃ added per liter of sample

PRESERVATION: Aliquot frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. METHOD: Atomic absorption (240.7 nm)

INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer
RANGE: 0.1-1.0 mg Co/liter
QUANTITY ANALYZED: 5 ml
PRECISION:
INTERFERENCES: 8
STATUS: USGS, EPA
REFERENCES: 8, 22, 23

C. DATA REPORT:

UNITS: mg Co/liter
MINIMUM REPORTABLE CONCENTRATION: 0.1 mg Co/liter
SIGNIFICANCE THRESHOLD: 1.0 mg Co/liter
FORMAT: Computer Line Printer Output with Magnetic Tape Storage
REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
COPPER in water PARAMETER

<table>
<thead>
<tr>
<th></th>
<th># 009901</th>
</tr>
</thead>
</table>

Effective date 3/1/75

A. **SAMPLING:**

COLLECTION: 1-4 liters using a depth-integrating sampler

CONTAINER: Polyethylene bottle

PRETREATMENT: 5 ml conc HNO₃ added per liter of sample

PRESERVATION: Aliquot frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. **METHOD:** Atomic absorption (324.7 nm)

INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

RANGE: 0.05-5.0 mg Cu/liter

QUANTITY ANALYZED: 5 ml

PRECISION: RSD 11.9% at 0.22 mg Cu/liter

INTERFERENCES: 8

STATUS: USGS, EPA

REFERENCES: 8, 22, 23

C. **DATA REPORT:**

UNITS: mg Cu/liter

MINIMUM REPORTABLE CONCENTRATION: 0.05 mg Cu/liter

SIGNIFICANCE THRESHOLD: 0.1 mg Cu/liter

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
IRON in water

Effective date 3/1/75

A. SAMPLING:

COLLECTION: 1-4 liters using a depth-integrating sampler
CONTAINER: Polyethylene bottle
PRETREATMENT: 5 ml conc HNO₃ added per liter of sample

PRESERVATION: Aliquot frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. METHOD: Atomic absorption (248.3 nm)

INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

RANGE: 0.05-1.5 mg Fe/liter
QUANTITY ANALYZED: 5 ml
PRECISION: RSD 18.4% at 0.14 mg Fe/liter
INTERFERENCES: 8
STATUS: USGS, EPA
REFERENCES: 8, 22, 23

C. DATA REPORT:

UNITS: mg Fe/liter
MINIMUM REPORTABLE CONCENTRATION: 0.05 mg Fe/liter
SIGNIFICANCE THRESHOLD: 0.1 mg Fe/liter
FORMAT: Computer Line Printer Output with Magnetic Tape Storage
REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
LEAD in water

Effective date 6/11/75

A. SAMPLING:

COLLECTION: 1-4 liters using a depth-integrating sampler
CONTAINER: Polyethylene bottle
PRETREATMENT: 5 ml conc HNO₃ added per liter of sample

PRESERVATION: Aliquot frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. METHOD: Atomic Absorption (217.0 nm)

INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

RANGE: 0.1-2.5 mg Pb/liter

QUANTITY ANALYZED: 5 ml

PRECISION: RSD 73% at 0.2 mg Pb/liter

INTERFERENCES: 23

STATUS: USGS, EPA

REFERENCES: 23

C. DATA REPORT:

UNITS: mg Pb/liter

MINIMUM REPORTABLE CONCENTRATION: 0.1 mg Pb/liter

SIGNIFICANCE THRESHOLD: 1.0 mg Pb/liter

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
MAGNESIUM in water

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th># 012601</th>
</tr>
</thead>
</table>

Effective date 3/1/75

A. SAMPLING:

COLLECTION: 1-4 liters using a depth-integrating sampler
CONTAINER: Polyethylene bottle
PRETREATMENT: 5 ml conc HNO₃ added per liter of sample

PRESERVATION: Aliquot frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. METHOD: Atomic absorption (285.2 nm)

INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

RANGE: 0.1-10 mg Mg/liter
QUANTITY ANALYZED: 5 ml
PRECISION: RSD 4.8% at 6.7 mg Mg/liter
INTERFERENCES: 8
STATUS: USGS, EPA
REFERENCES: 8, 22, 23

C. DATA REPORT:

UNITS: mg Mg/liter
MINIMUM REPORTABLE CONCENTRATION: 0.1 mg Mg/liter
SIGNIFICANCE THRESHOLD: 1.0 mg Mg/liter

FORMAT: Computer Line Printer Output with Magnetic Tape Storage
REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
Effective date 3/1/75

A. **SAMPLING:**

 COLLECTION: 1-4 liters using a depth integrating sampler
 CONTAINER: Polyethylene bottle
 PRETREATMENT: 5 ml conc HNO₃ added per liter of sample

 PRESERVATION: Aliquot frozen at site in dry-ice chest

 TRANSIT TIME: < 2 days

B. **METHOD:** Atomic Absorption (279.5 nm)

 INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

 RANGE: 0.02-2.5 mg Mn/liter
 QUANTITY ANALYZED: 5 ml
 PRECISION: RSD 12.5% at 0.11 mg Mn/liter
 INTERFERENCES: 8
 STATUS: USGS, EPA
 REFERENCES: 8, 22, 23

C. **DATA REPORT:**

 UNITS: mg Mn/liter
 MINIMUM REPORTABLE CONCENTRATION: 0.02 mg Mn/liter
 SIGNIFICANCE THRESHOLD: 0.10 mg Mn/liter
 FORMAT: Computer Line Printer Output with Magnetic Tape Storage

 REPORTED BY: Environmental Health Center
 Division of Laboratories and Research
 New York State Department of Health
Effective date: 9/4/75

A. SAMPLING:

COLLECTION: 1-4 liters using a depth-integrating sampler
CONTAINER: Polyethylene bottle
PRETREATMENT: 5 ml conc HNO₃ added per liter of sample

PREPARATION: Aliquot frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. METHOD: Atomic absorption (253.7 nm)

INSTRUMENTATION: Varian AA-4 atomic absorption spectrophotometer

RANGE: 0.0004-0.0036 mg Hg/liter

QUANTITY ANALYZED: 50 ml

PRECISION: RSD 6.6% at 0.0017 mg Hg/liter

INTERFERENCES: 8

STATUS: USGS, EPA

REFERENCES: 8, 22, 23

C. DATA REPORT:

UNITS: mg Hg/liter

MINIMUM REPORTABLE CONCENTRATION: 0.0004 mg Hg/liter

SIGNIFICANCE THRESHOLD: 0.001 mg Hg/liter

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center Division of Laboratories and Research New York State Department of Health
<table>
<thead>
<tr>
<th>NICKEL in water</th>
<th>PARAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># 012801</td>
</tr>
</tbody>
</table>

Effective date 3/1/75

A. **SAMPLING:**
 - **COLLECTION:** 1-4 liters using a depth-integrating sampler
 - **CONTAINER:** Polyethylene bottle
 - **PRETREATMENT:** 5 ml conc HNO₃ added per liter of sample

PRESERVATION: Aliquot frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. **METHOD:** Atomic absorption (232.0 nm)

INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

RANGE: 0.05-1.5 mg Ni/liter

QUANTITY ANALYZED: 5 ml

PRECISION: RSD 17.5% at 0.22 mg Ni/liter

INTERFERENCES: 8

STATUS: USGS, EPA

REFERENCES: 8, 22, 23

C. **DATA REPORT:**

UNITS: mg Ni/liter

MINIMUM REPORTABLE CONCENTRATION: 0.05 mg Ni/liter

SIGNIFICANCE THRESHOLD: 0.1 mg Ni/liter

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
Effective date 3/1/75

A. SAMPLING:

COLLECTION: 1-4 liters using a depth-integrating sampler
CONTAINER: Polyethylene bottle
PRETREATMENT: 5 ml conc HNO₃ added per liter of sample

PRESERVATION: Aliquot frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. METHOD: Atomic absorption (766.5 nm)

INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer
RANGE: 0.1-5.0 mg K/liter
QUANTITY ANALYZED: 5 ml
PRECISION: RSD 18.3% at 0.9 mg K/liter
INTERFERENCES: 8
STATUS: USGS, EPA
REFERENCES: 8, 22, 23

C. DATA REPORT:

UNITS: mg K/liter
MINIMUM REPORTABLE CONCENTRATION: 0.1 mg K/liter
SIGNIFICANCE THRESHOLD: 1.0 mg K/liter
FORMAT: Computer Line Printer Output with Magnetic Tape Storage.

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
SODIUM in water

PARAMETER # 010701

Effective date 3/1/75

A. SAMPLING:
 COLLECTION: 1-4 liters using a depth-integrating sampler
 CONTAINER: Polyethylene bottle
 PRETREATMENT: 5 ml conc HNO₃ added per liter of sample

 PRESERVATION: Aliquot frozen at site in dry-ice chest

 TRANSIT TIME: < 2 days

B. METHOD: Atomic absorption (589.0 nm)

 INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

 RANGE: 0.5-100 mg Na/liter
 QUANTITY ANALYZED: 5 ml
 PRECISION: RSD 9.5% at 52 mg Na/liter
 INTERFERENCES: 8
 STATUS: USGS, EPA
 REFERENCES: 8, 22, 23

C. DATA REPORT:

 UNITS: mg Na/liter
 MINIMUM REPORTABLE CONCENTRATION: 0.5 mg Na/liter
 SIGNIFICANCE THRESHOLD: 1.0 mg Na/liter
 FORMAT: Computer Line Printer Output with Magnetic Tape Storage
 REPORTED BY: Environmental Health Center
 Division of Laboratories and Research
 New York State Department of Health
ZINC in water

Effective date 3/1/75

A. SAMPLING:

COLLECTION: 1-4 liters using a depth-integrating sampler

CONTAINER: Polyethylene bottle

PRETREATMENT: 5 ml conc HNO₃ added per liter of sample

PRESERVATION: Aliquot frozen at site in dry-ice chest

TRANSIT TIME: < 2 days

B. METHOD: Atomic absorption (213.9 nm)

INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

RANGE: 0.05-1.5 mg Zn/liter

QUANTITY ANALYZED: 5 ml

PRECISION: RSD 8.7% at 0.23 mg Zn/liter

INTERFERENCES: 8

STATUS: EPA, USGA

REFERENCES: 8, 22, 23

C. DATA REPORT:

UNITS: mg Zn/liter

MINIMUM REPORTABLE CONCENTRATION: 0.05 mg Zn/liter

SIGNIFICANCE THRESHOLD: 0.10 mg Zn/liter

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
Sediment Analysis

Although several sediment analysis schemes are available in the literature, the following flow chart has been specially developed for fluvial sediments.

Using a regular sediment sampler or plastic shovel, bottom materials are collected and placed in a plastic pail. After wet-sieving with a 2-mm plastic sieve and discarding material > 2mm, the sample is split into several subsamples. Some are used wet, some air-dried, some oven-dried (105-110°C), and some frozen for preservation. The wet-sieved (-2 mm) sample is used directly for extractable nutrients and for trace metals and other ions. The dried samples are ground, homogenized, sieved through a 100-mesh plastic sieve, and stored for further analysis. The air-dried sample is used to analyze for carbon and such volatile elements as sulfur, selenium, arsenic, and mercury. The oven-dried sample is used for the analysis of nitrogen, phosphorus, and metals.

Metals are analyzed for by first preparing a HNO₃-H₂O₂-digested extract of an oven-dried, sieved aliquot. A 50-ml stock solution is prepared from the digestate and analyzed directly or diluted to bring the solution concentration to the correct range for analysis.

The statistical information presented for each parameter was obtained in this laboratory during 1975.

The range reported refers to the actual working range used in this laboratory in routine analysis of large numbers of samples.

Minimum reportable concentration indicates the lowest result reported for an analytical determination. This value corresponds to an estimate of the result which is different from zero at the 95% confidence level. Results that are smaller than one-half the minimum
reportable concentration are reported as "less than" values.

Significance threshold represents the smallest value reported with two significant figures.

For all procedures described here blanks and quality control check samples (either supplied by the National Bureau of Standards or secondary standards calibrated by this laboratory) are routinely analyzed. Periodic evaluation of procedures and computational methods is also done routinely.

Abbreviations used in this manual:

APHA American Public Health Association
EPA (United States) Environmental Protection Agency
NYSDH New York State Department of Health
RSD Relative Standard Deviation
USGS United States Geological Survey
Effective date 11/1/75

A. SAMPLING: See sediment analysis flow chart

COLLECTION: Bottom sampler or plastic shovel

CONTAINER: Plastic pail

PRETREATMENT: Bed material is wet sieved; material > 2 mm is discarded.

PRESERVATION: Several split samples frozen and stored

TRANSIT TIME: < 2 days

B. METHOD: Air-dried, homogenized and sieved (-100 mesh). Sample is directly used for analysis in the P & E 240 CHN Analyzer. Approximately 5–500 mg samples are used.

INSTRUMENTATION: Perkin-Elmer 240 Elemental Analyzer

RANGE: 0.010–20%

QUANTITY ANALYZED: 5–500 mg

PRECISION: 23% at 0.057% N

INTERFERENCES: 15

STATUS: NYSDH

REFERENCES: 15

C. DATA REPORT:

UNITS: Percent

MINIMUM REPORTABLE CONCENTRATION: 0.01%

SIGNIFICANCE THRESHOLD: 0.10%

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
PHOSPHORUS, total P in dry solids

Effective date 3/1/75

A. SAMPLING:
 See sediment analysis flow chart

 COLLECTION: Bottom sampler or plastic shovel
 CONTAINER: Plastic pail

 PRETREATMENT: Bed material is wet-sieved, and material > 2 mm is discarded.

 PRESERVATION: Several split samples frozen and stored

 TRANSIT TIME: < 2 days

B. METHOD:
 Alkaline K$_2$S$_2$O$_8$ digestion of the homogenized (-100 mesh) oven-dried sample results in orthophosphate formation. Determined spectrophotometrically by molybdenum blue method. Approximately 0.2-g samples are used.

 INSTRUMENTATION: Bausch and Lomb 400 Spectrophotometer with digital printout

 RANGE: 0.002 - 0.100 mg P/liter

 QUANTITY ANALYZED: 0.2 g

 PRECISION: RSD 14.9% at 0.19 mg P/liter

 INTERFERENCES: 20

 STATUS: APHA, EPA

 REFERENCES: 7, 8, 9, 17, 20

C. DATA REPORT:

 UNITS: Percent

 MINIMUM REPORTABLE CONCENTRATION: 0.002 mg P/liter

 SIGNIFICANCE THRESHOLD: 0.010 mg P/liter

 FORMAT: Computer Line Printer Output With Magnetic Tape Supplement

 REPORTED BY: Environmental Health Center
 Division of Laboratories and Research
 New York State Department of Health
Effective date 1/11/75

A. SAMPLING: See sediment analysis flow chart

COLLECTION: Bottom sampler or plastic shovel
CONTAINER: Plastic pail
PRETREATMENT: Bed material is wet sieved; material > 2 mm is discarded.

PRESERVATION: Several split samples frozen and stored

TRANSIT TIME: < 2 days

B. METHOD: Air-dried, homogenized and sieved (-100 mesh). Sample is directly used for analysis in the Perkin-Elmer 240 Elemental Analyzer. Approximately 5-500 mg samples are used.

INSTRUMENTATION: Perkin-Elmer 240 Elemental Analyzer

RANGE: 0.01 - 60%
QUANTITY ANALYZED: 5-500 mg
PRECISION: 20% at 0.5% C
INTERFERENCES: 15
STATUS: NYSDH
REFERENCES: 15

C. DATA REPORT:

UNITS: Percent
MINIMUM REPORTABLE CONCENTRATION: 0.01%
SIGNIFICANCE THRESHOLD: 0.10%
FORMAT: Computer Line Printer Output with Magnetic Tape Storage
REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
CARBON, total organic in dry solids

Effective date: 11/1/75

A. SAMPLING: See sediment analysis flow chart
 COLLECTION: Bottom sampler or plastic shovel
 CONTAINER: Plastic pail
 PRETREATMENT: Bed material is wet-sieved, and material > 2 mm is discarded.

 PRESERVATION: Several split samples frozen and stored

 TRANSIT TIME: < 2 days

B. METHOD: Air-dried, homogenized, and sieved (~100 mesh) sample is directly used for analysis in the Perkin-Elmer 240 CHN Analyzer. Sample is treated with phosphoric acid before combustion to decompose carbonates. Approximately 5-500 mg samples are used.

 INSTRUMENTATION: Perkin-Elmer 240 Elemental Analyzer

 RANGE: 0.1 - 10%

 QUANTITY ANALYZED: 2 mg

 PRECISION: RSD 6% at 2.2% C

 INTERFERENCES: 15

 STATUS: NYSDH

 REFERENCES: 15

C. DATA REPORT:

 UNITS: Percent

 MINIMUM REPORTABLE CONCENTRATION: 0.10%

 SIGNIFICANCE THRESHOLD: 0.10%

 FORMAT: Computer Line Printer Output with Magnetic Tape Storage

 REPORTED BY: Environmental Health Center
 Division of Laboratories and Research
 New York State Department of Health
ARSENIC, extractable in sediment

PARAMETER
009303

Effective date 7/1/75

A. SAMPLING: See sediment analysis flow chart

COLLECTION: Bottom sampler or plastic shovel

CONTAINER: Plastic pail

PRETREATMENT: Bed material is wet-sieved, and material > 2 mm is discarded.

PRESERVATION: Several split samples frozen and stored

TRANSIT TIME: < 2 days

B. METHOD: Air-dried, homogenized and sieved (-100 mesh) sample is digested with conc. H₂SO₄ and H₂O₂ and the extract is diluted. The silver diethyl dithiocarbamate method is used to determine As. Approximately 1-g samples are used and the volume of the extract is 100 ml.

INSTRUMENTATION: Bausch and Lomb 400 Spectrophotometer with digital printout

RANGE: 2-15 µg As/g

QUANTITY ANALYZED: 1 g

PRECISION: Not available

INTERFERENCES: 11, 20

STATUS: APHA, USGS

REFERENCES: 11, 20

C. DATA REPORT:

UNITS: µg As/g dry solid

MINIMUM REPORTABLE CONCENTRATION: 2 µg As/g

SIGNIFICANCE THRESHOLD: Not available

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
CALCIUM, extractable in sediment

Effective date 6/11/75

A. SAMPLING: See sediment analysis flow chart

COLLECTION: Bottom sampler or plastic shovel

CONTAINER: Plastic pail

PRETREATMENT: Bed material is wet-sieved, and material > 2 mm is discarded.

PRESERVATION: Several split samples frozen and stored

TRANSIT TIME: < 2 days

B. METHOD: Atomic absorption (422.7 nm)

Approximately 0.5-g samples are digested with HNO₃-H₂O₂ and the digestate made to 50 ml stock solution with distilled water.

INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

RANGE: 50-3000 µg Ca/g

QUANTITY ANALYZED: 0.5 g 5 ml digestate

PRECISION: RSD 12% at 3000 µg Ca/g

INTERFERENCES: 23

STATUS: Experimental

REFERENCES: 13, 23

C. DATA REPORT:

UNITS: µg Ca/g dry sample

MINIMUM REPORTABLE CONCENTRATION: 50 µg Ca/g

SIGNIFICANCE THRESHOLD: 100 µg Ca/g

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
Effective date 6/11/75

A. SAMPLING: See sediment analysis flow chart

 COLLECTION: Bottom sampler or plastic shovel
 CONTAINER: Plastic pail
 PRETREATMENT: Bed material is wet-sieved, and material > 2 mm is discarded.

 PRESERVATION: Several split samples frozen and stored

 TRANSIT TIME: < 2 days

B. METHOD: Atomic absorption (228.8 nm) Approximately 0.5-g samples are digested with HNO₃-H₂O₂ and the digestate made to 50 ml stock solution.

 INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer
 RANGE: (sediments) 3-21 µg Cd/g
 QUANTITY ANALYZED: 0.5 g 5 ml digestate
 PRECISION: RSD 5% at 19.7 µg Cd/g
 INTERFERENCES: 23
 STATUS: Experimental
 REFERENCES: 13, 23

C. DATA REPORT:
 UNITS: µg Cd/g dry sample
 MINIMUM REPORTABLE CONCENTRATION: 2 µg Cd/g
 SIGNIFICANCE THRESHOLD: 10 µg Cd/g
 FORMAT: Computer Line Printer Output with Magnetic Tape Storage
 REPORTED BY: Environmental Health Center
 Division of Laboratories and Research
 New York State Department of Health
CHROMIUM, extractable in sediment

Effective date 6/11/75

A. SAMPLING: See sediment analysis flow chart
COLLECTION: Bottom sampler or plastic shovel
CONTAINER: Plastic pail
PRETREATMENT: Bed material is wet-sieved, and material > 2 mm is discarded.

PREERVATION: Several split samples frozen and stored

TRANSIT TIME: < 2 days

B. METHOD: Atomic absorption (357.9 nm)
Approximately 0.5-g samples are digested with HNO₃-H₂O₂ and the digestate made to 50 ml stock solution.

INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

RANGE: (sediments) 12-850 µg Cr/g

QUANTITY ANALYZED: 0.5 g 5 ml digestate

PRECISION: RSD 35% at 23 µg Cr/g
16% at 730 µg Cr/g

INTERFERENCES: 23

STATUS: Experimental

REFERENCES: 13, 23

C. DATA REPORT:

UNITS: µg Cr/g dry sample

MINIMUM REPORTABLE CONCENTRATION: 10 µg Cr/g

SIGNIFICANCE THRESHOLD: 100 µg Cr/g

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
COPPER, extractable in sediment

Effective date 6/11/75

A. SAMPLING: See sediment analysis flow chart

COLLECTION: Bottom sampler or plastic shovel
CONTAINER: Plastic pail
PRETREATMENT: Bed material is wet-sieved, and material > 2 mm is discarded.

PRESERVATION: Several split samples frozen and stored

TRANSIT TIME: < 2 days

B. METHOD: Atomic absorption (324.7 nm)
Approximately 0.5-g samples are digested with HNO₃-H₂O₂ and the digestate made to 50 ml stock solution.

INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

RANGE: (sediments) 13-1010 μg Cu/g

QUANTITY ANALYZED: 0.5 g 5 ml digestate

PRECISION: RSD 14% at 15 μg Cu/g
6% at 920 μg Cu/g

INTERFERENCES: 23

STATUS: Experimental

REFERENCES: 13, 23

C. DATA REPORT:

UNITS: μg Cu/g dry sample

MINIMUM REPORTABLE CONCENTRATION: 5 μg Cu/g

SIGNIFICANCE THRESHOLD: 10 μg C/g

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
IRON, extractable in sediment

PARAMETER
010003

Effective date: 6/11/75

A. SAMPLING:

COLLECTION: Bottom sampler or plastic shovel
CONTAINER: Plastic pail
PRETREATMENT: Bed material is wet-sieved, and material > .2 mm is discarded.

PRESERVATION: Several split samples frozen and stored

TRANSIT TIME: < 2 days

B. METHOD:

Atomic absorption (248.3 nm)
Approximately 0.5-g samples are digested with HNO₃-H₂O₂ and the digestate made to 50 ml stock solution.

INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

RANGE: (sediments) 9 x 10³ - 7.2 x 10⁴ µg Fe/g
QUANTITY ANALYZED: 0.5 g 5 ml digestate
PRECISION: RSD 19% at 1.1 x 10⁴ µg Fe/g
14% at 6.1 x 10⁴ µg Fe/g
INTERFERENCES: 23
STATUS: Experimental
REFERENCES: 13, 23

C. DATA REPORT:

UNITS: µg Fe/g dry sample
MINIMUM REPORTABLE CONCENTRATION: .5 µg Fe/g
SIGNIFICANCE THRESHOLD: 10. µg Fe/g
FORMAT: Computer Line Printer Output with Magnetic Tape Storage
REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
Effective date 6/11/75

A. SAMPLING: See sediment analysis flow chart

 COLLECTION: Bottom sampler or plastic shovel

 CONTAINER: Plastic pail

 PRETREATMENT: Bed material is wet-sieved, and material
 > 2 mm is discarded.

 PRESERVATION: Several split samples frozen and stored

 TRANSIT TIME: < 2 days

B. METHOD: Atomic absorption (217.0 nm)
 Approximately 0.5-g samples are digested with HNO₃-H₂O₂
 and the digestate made to 50 ml stock solution.

 INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

 RANGE: (sediments) 10-770 μg Pb/g

 QUANTITY ANALYZED: 0.5 g 5 ml digestate

 PRECISION: RSD 40% at 21 μg Pb/g
 2% at 750 μg Pb/g

 INTERFERENCES: 23

 STATUS: Experimental

 REFERENCES: 13, 23

C. DATA REPORT:

 UNITS: μg Pb/g dry sample

 MINIMUM REPORTABLE CONCENTRATION: 10 μg Pb/g

 SIGNIFICANCE THRESHOLD: 100 μg Pb/g

 FORMAT: Computer Line Printer Output with Magnetic Tape Storage

 REPORTED BY: Environmental Health Center
 Division of Laboratories and Research
 New York State Department of Health
Effective date 6/11/75

A. **SAMPLING:** See sediment analysis flow chart

 COLLECTION: Bottom sampler or plastic shovel

 CONTAINER: Plastic pail

 PRETREATMENT: Bed material is wet-sieved, and material > 2 mm is discarded.

 PRESERVATION: Several split samples frozen and stored

 TRANSIT TIME: < 2 days

B. **METHOD:** Atomic absorption (285.2 nm) Approximately 0.5-g samples are digested with HNO₃-H₂O₂ and the digestate made to 50 ml stock solution.

 INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

 RANGE: 10 - 1000 µg Mg/g

 QUANTITY ANALYZED: 0.5 g 5 ml digestate

 PRECISION: RSD 4.8% at 660 µg Mg/g

 INTERFERENCES: 23

 STATUS: Experimental

 REFERENCES: 13, 23

C. **DATA REPORT:**

 UNITS: µg Mg/g dry sample

 MINIMUM REPORTABLE CONCENTRATION: 10 µg Mg/g

 SIGNIFICANCE THRESHOLD: 100 µg Mg/g

 FORMAT: Computer Line Printer Output with Magnetic Tape Storage

 REPORTED BY: Environmental Health Center
 Division of Laboratories and Research
New York State Department of Health
MANGANESE, extractable in sediment

Effective date 6/11/75

A. SAMPLING: See sediment analysis flow chart

COLLECTION: Bottom sampler or plastic shovel

CONTAINER: Plastic pail

PRETREATMENT: Bed material is wet-sieved, and material > 2 mm is discarded.

PRESERVATION: Several split samples frozen and stored

TRANSIT TIME: < 2 days

B. METHOD: Atomic absorption (279.5 nm) Approximately 0.5-g samples are digested with HNO₃-H₂O₂ and the digestate made to 50 ml stock solution.

INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

RANGE: 120-1800 µg Mn/g

QUANTITY ANALYZED: 0.5 g 5 ml digestate

PRECISION: RSD 14% at 150 µg Mn/g
 10% at 570 µg Mn/g

INTERFERENCES: Not available

STATUS: Experimental

REFERENCES: 13, 23

C. DATA REPORT:

UNITS: µg Mn/g dry sample

MINIMUM REPORTABLE CONCENTRATION: 2 µg Mn/g

SIGNIFICANCE THRESHOLD: 10 µg Mn/g

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
 Division of Laboratories and Research
 New York State Department of Health
Effective date 3/1/75

A. SAMPLING: See sediment analysis flow chart
 COLLECTION: Bottom sampler or plastic shovel
 CONTAINER: Plastic pail
 PRETREATMENT: Bed material is wet-sieved, and material > 2 mm is discarded.
 PRESERVATION: Several split samples frozen and stored
 TRANSIT TIME: < 2 days

B. METHOD: Atomic absorption (253.7 nm) Air-dried, sieved (-100 mesh) sample is digested with H$_2$SO$_4$ and KMnO$_4$ and the extract diluted. Approximately 1-g samples are used.

 INSTRUMENTATION: Varian AA-4 atomic absorption spectrophotometer
 RANGE: Not available
 QUANTITY ANALYZED: 1 g
 PRECISION: Not available
 INTERFERENCES: 23
 STATUS: USGS
 REFERENCES: 23

C. DATA REPORT:
 UNITS: µg Hg/g dry sample
 MINIMUM REPORTABLE CONCENTRATION: Not available
 SIGNIFICANCE THRESHOLD: Not available
 FORMAT: Computer Line Printer Output with Magnetic Tape Storage
 REPORTED BY: Environmental Health Center
 Division of Laboratories and Research
 New York State Department of Health
NICKEL, extractable in sediment

Effective date 6/11/75

A. SAMPLING:
 See sediment analysis flow chart
 COLLECTION: Bottom sampler or plastic shovel
 CONTAINER: Plastic pail
 PRETREATMENT: Bed material is wet-sieved, and material > 2 mm is discarded.

 PRESERVATION: Several split samples frozen and stored

 TRANSIT TIME: < 2 days

B. METHOD:
 Atomic absorption (232.0 nm) Approximately 0.5-g samples are digested with HNO₃-H₂O₂ and the digestate made to 50 ml stock solution.

 INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

 RANGE: (sediments) 5 - 80 µg Ni/g

 QUANTITY ANALYZED: 0.5 g 5 ml digestate

 PRECISION: RSD 15% at 30 µg Ni/g
 10% at 73 µg Ni/g

 INTERFERENCES: 23

 STATUS: Experimental

 REFERENCES: 13, 23

C. DATA REPORT:

 UNITS: µg Ni/g dry sample

 MINIMUM REPORTABLE CONCENTRATION: 5 µg Ni/g

 SIGNIFICANCE THRESHOLD: 10 µg Ni/g

 FORMAT: Computer Line Printer Output with Magnetic Tape Storage

 REPORTED BY: Environmental Health Center
 Division of Laboratories and Research,
 New York State Department of Health
POTASSIUM, extractable in sediment

Effective date 6/11/75

A. SAMPLING: See sediment analysis flow chart

COLLECTION: Bottom sampler or plastic shovel
CONTAINER: Plastic pail
PRETREATMENT: Bed material is wet-sieved; material > 2 mm is discarded.

PRESERVATION: Several split samples frozen and stored

TRANSIT TIME: < 2 days

B. METHOD: Atomic absorption (766.5 nm) Approximately 0.5-g samples are digested with HNO₃-H₂O₂ and the digestate made to 50 ml stock solution.

INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

RANGE: 10 - 500 μg K/g
QUANTITY ANALYZED: 0.5 g 5 ml digestate
PRECISION: RSD 18% at 90 μg K/g
INTERFERENCES: 23
STATUS: Experimental
REFERENCES: 13, 23

C. DATA REPORT:

UNITS: μg K/g dry sample

MINIMUM REPORTABLE CONCENTRATION: 10 μg K/g

SIGNIFICANCE THRESHOLD: 100 μg K/g

FORMAT: Computer Line Printer Output with Magnetic Tape Storage

REPORTED BY: Environmental Health Center
Division of Laboratories and Research
New York State Department of Health
A. SAMPLING: See sediment analysis flow chart
 COLLECTION: Bottom sampler or plastic shovel
 CONTAINER: Plastic pail
 PRETREATMENT: Bed material is wet-sieved, and material > 2 mm is discarded.

 PRESERVATION: Several split samples frozen and stored

 TRANSIT TIME: < 2 days

B. METHOD: Atomic absorption (589.0 nm) Approximately 0.5-g samples are digested with HNO₃-H₂O₂ and the digestate made to 50 ml stock solution.

 INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

 RANGE: 50 - 10,000 µg Na/g

 QUANTITY ANALYZED: 0.5 g 5 ml digestate

 PRECISION: RSD 9.5% at 5200 µg Na/g

 INTERFERENCES: 23

 STATUS: Experimental

 REFERENCES: 13, 23

C. DATA REPORT:

 UNITS: µg Na/g dry sample

 MINIMUM REPORTABLE CONCENTRATION: 50 µg Na/g

 SIGNIFICANCE THRESHOLD: 100 µg Na/g

 FORMAT: Computer Line Printer Output with Magnetic Tape Storage

 REPORTED BY: Environmental Health Center
 Division of Laboratories and Research
 New York State Department of Health
Effective date: 6/11/75

A. SAMPLING: See sediment analysis flow chart

COLLECTION: Bottom sampler or plastic shovel

CONTAINER: Plastic pail

PRETREATMENT: Bed material is wet-sieved, and material > 2 mm is discarded.

PRESERVATION: Several split samples frozen and stored

TRANSIT TIME: < 2 days

3. METHOD: Atomic absorption (213.9 nm) Approximately 0.5-g samples are digested with HNO₃-H₂O₂ and the digestate made to 50 ml stock solution.

INSTRUMENTATION: Varian AA-5 atomic absorption spectrophotometer

RANGE: (sediments) 13-1400 μg Zn/g

QUANTITY ANALYZED: 0.5 g 5 ml digestate

PRECISION: RSD 29% at 18 μg Zn/g
28% at 1130 μg Zn/g

INTERFERENCES: 23

STATUS: Experimental

REFERENCES: 13, 23

C. DATA REPORT:

UNITS: μg Zn/g dry sample

MINIMUM REPORTABLE CONCENTRATION: 5 μg Zn/g

SIGNIFICANCE THRESHOLD: 10 μg Zn/g

FORMAT: Computer Line Printer Output with Magnetic Tape Tabulation

REPORTED BY: Environmental Health Center Division of Laboratories and Research New York State Department of Health
BIBLIOGRAPHY

10. Instructions and Procedures Manual for the Total Carbon System Model 0524B, Oceanography International Corp., College Station, TX.

