Grassland bird abundance and habitat quality at Fort Drum, New York

FUNDING PROVIDED BY:
OAK RIDGE INSTITUTE FOR SCIENCE AND EDUCATION (ORISE), A DIVISION OF THE US DEPARTMENT OF ENERGY
&
THE COLLEGE AT BROCKPORT
Outline: overview

1. Introduction
 1. Why study grassland birds?
 2. Objectives
 3. Study site

2. OGBB habitat and abundance
 1. Methods
 2. Why do bird-habitat modeling
 3. OGBB models
 4. Modeling conclusion

3. Case study
 1. Sedge wren ecology
 2. Sedge wren management

4. Conclusion
Why study grassland birds?

- Grassland birds are declining:
 - More than any other bird group in North America (Sauer et al. 2012)
 - In NY, nine of 11 species have significantly declined (Sauer et al. 2012)

- Decrease in grassland
 - Decrease in hayfields and grassland area (Foster et al. 2002)
 - More frequent haycropping (Bollinger et al. 1990)
 - Re-forestation (Foster et al. 2002)

- Grassland birds are declining and listed as threatened on a world wide basis
 - making preservation of grassland habitat a priority (Hunter et al. 2001).
Objectives

- OGBB abundance and habitat preferences
 - Create habitat models
- Observe sedge wrens
 - Habitat preferences
- Management recommendations for Fort Drum, NY
 - Implications for the NE
Fort Drum in context of Northeastern United States

Fort Drum, Lewis and Jefferson Counties, New York, USA
OGBB habitat and abundance
2011 Species Abundance

- **OGBB BOBO**: 78
- **OGBB SAVS**: 52
- **OGBB SEWR**: 5
- **SBB ALFL**: 23
- **SBB COYE**: 78
- **SBB FISP**: 1
- **SBB GRCA**: 1
- **SBB SOSP**: 28
- **SBB WIFL**: 5
- **SBB YWAR**: 24
- **Other**: 57

2012 Species Abundance

- **OGBB BOBO**: 70
- **OGBB HESP**: 1
- **OGBB SAVS**: 22
- **OGBB SEWR**: 1
- **SBB ALFL**: 19
- **SBB AMGO**: 1
- **SBB COYE**: 113
- **SBB GRCA**: 3
- **SBB SOSP**: 22
- **SBB WIFL**: 18
- **SBB YWAR**: 27
- **Other**: 43

Mean abundance/plot

<table>
<thead>
<tr>
<th>Year</th>
<th>OGBB Mean</th>
<th>SBB Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>3.29 (±0.301)†(0,9)*</td>
<td>3.90 (±0.304)†(1,8)*</td>
</tr>
<tr>
<td>2012</td>
<td>2.29 (±0.267)(0,6)</td>
<td>4.95 (±0.418)(0,11)</td>
</tr>
<tr>
<td>2011 & 2012</td>
<td>2.79 (±0.207)(0,9)</td>
<td>4.43 (±0.263)(0,11)</td>
</tr>
</tbody>
</table>
Vegetation Survey Methods

- Vegetation analysis
 - Robel Pole
 - Plant taxa richness
 - Litter depth
 - Percent cover: grass, forb, shrub, golden rod, standing dead, bare ground

- SEWR Territories
Why do bird-habitat modeling?

- **Natural selection/niche:**
 - a species is molded to a specific environment where it is most likely to “do well”

- **Management:**
 - Identify habitat variables that influence abundance

- **Parsimony**
What is GLM?

1. GLM – generalized linear model
 1. Better suited for discrete response variables (ie. counts)
 1. “zero-inflated distributions”
 2. Like a linear regression but it is “generalized” to fit many types of dependent variables
What is GLM?

- **Link functions:**
 - Allows the equation to linearly produce “n”
 - The “link” makes the GLM
 - Without it, the equation would just be a linear equation being applied to a non-linear relationship

\[\eta = \sum_{k=1}^{K} \beta_k X_k \]

- **Natural logarithm link**
 - Used for count data when the numbers do not get very large
 - Often count data are not normally distributed
 - Work well with Poisson distributions
What is GLM?

- Poisson distribution
 - Count data
 - Lower bound is zero
 - Integers are discrete (not continuous)
 - Often has a rapidly descending tail

- Example:
 - Prussian Army – death by mule
What is AIC?

- Used for choosing models/eliminating variables
- Considers:
 - Goodness of fit
 - Model complexity
- Reflects:
 - Amount of information lost
 - Lower scores are better
- Now the standard for model selection

- Akaike Weights
 - Weighted score when AIC differs by <2
- AICc
 - For small sample sizes
 - When \(\frac{n}{K} < 40 \)
 - \(n = \text{sample size} \)
 - \(K = \# \text{ of parameters} \)
- Akaike Information Criterion
Modeling Results: OGBB

<table>
<thead>
<tr>
<th>Response Variable</th>
<th>Rank</th>
<th>AICc</th>
<th>ΔAICc</th>
<th>Wi</th>
<th>K</th>
<th>Predictor Variable</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>OGBB 2011</td>
<td>1</td>
<td>165.559</td>
<td>0.000</td>
<td>0.32499</td>
<td>3</td>
<td>Standing dead</td>
<td>-0.174</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plant taxa richness</td>
<td>-0.195</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Robel</td>
<td>-0.288</td>
</tr>
<tr>
<td>OGBB 2012</td>
<td>1</td>
<td>135.585</td>
<td>0.000</td>
<td>0.45256</td>
<td>1</td>
<td>Graminoid</td>
<td>0.575</td>
</tr>
</tbody>
</table>
Modeling results: OGBB

- Abundance: OGBB 2011
 - Robel pole score vs. Abundance

- Abundance: OGBB 2012
 - % graminoid cover vs. Abundance
Modeling Results: BOBO and SAVS

<table>
<thead>
<tr>
<th>Response Variable</th>
<th>Rank</th>
<th>AICc</th>
<th>ΔAICc</th>
<th>Wi</th>
<th>K</th>
<th>Predictor Variable</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOBO 2011</td>
<td>1</td>
<td>131.443</td>
<td>0.000</td>
<td>0.4428</td>
<td>1</td>
<td>Robel</td>
<td>-0.124</td>
</tr>
<tr>
<td>BOBO 2012</td>
<td>1</td>
<td>120.910</td>
<td>0.000</td>
<td>0.3330</td>
<td>2</td>
<td>Robel</td>
<td>-0.272</td>
</tr>
<tr>
<td>Graminoid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.557</td>
</tr>
<tr>
<td>SAVS 2011</td>
<td>1</td>
<td>118.343</td>
<td>0.000</td>
<td>0.4221</td>
<td>2</td>
<td>Robel</td>
<td>-0.287</td>
</tr>
<tr>
<td>SAVS 2012</td>
<td>1</td>
<td>82.623</td>
<td>0.000</td>
<td>0.6895</td>
<td>1</td>
<td>Graminoid</td>
<td>0.201</td>
</tr>
</tbody>
</table>
Conclusion: OGBB Modeling

- **OGBB on Fort Drum:**
 - Shorter less dense vegetation, more graminoid cover, large areas

- **OGBB and military training:**
 - Fort Drum needs to maintain open spaces for training
 - Use rotational mowing regime
 - Creates varied habitat for both training and birds

- **Cooperative management**
 - Fish and Wildlife Program and ITAM (those who mow)
Conclusion: OGBB and modeling

- Models are guidelines
 - Did we measure enough variables to surpass the tolerance of the species?
 - Habitat varies by year and so does species response

- Mosaic landscape
 - Large areas increase probability of habitat diversity
 - Ribic et al. 2009, Rotenberry and Wiens 2009, Jacobs et al. 2012,

- Preemptive
1. Introduction
 1. Why study grassland birds?
 2. Objectives
 3. Study site

2. OGBB habitat and abundance
 1. Methods
 2. Why do bird-habitat modeling
 3. OGBB models
 4. Modeling conclusion

3. Case study
 1. Sedge wren ecology
 2. Sedge wren management

4. Conclusion
Case Study: Sedge wren (*Cistothorus platensis*)

- 7-10g
- Tall, dense grasses and sedges in moist areas
- Nomadic migrant
 - Or is it?
Case study: Sedge wren

- NYS status: threatened
 - Endangered in 5 out of 6 New England states
Case study: sedge wren

http://www.stateofthebirds.org/maps/grasslands/species-maps
Case Study: Sedge wren

Sedge wren locations by year 2006-2012

Year
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012

Dominant Vegetation
- Perennial Graminoid Vegetation

Abundance

SEWR

HESP

Year
- 1995
- 1996
- 1997
- 1998
- 1999
- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012

Abundance
SEWR and HESP

Sedge Wren

Henslow's Sparrow
Results: Sedge wren territories

- Live cover
- Graminoid
- Forb
- Goldenrod
- Woody Veg
- Standing Dead

Percent Cover Class

Territory
Random
Results: Sedge wren territories

Litter depth (cm)

- Territory
- Random
Sedge wren summary

- **Declines:**
 - Edge of range
 - Nomadic
 - Regional declines, affecting local abundance

- **Studying a rare species is difficult**
 - Abundance fluctuates
 - Hard to find
 - Sample size is small

- **Preemptive vs. reactive**
 - Everyone wants to save endangered species
Conclusion

- **OGBB on Fort Drum:**
 - Shorter less dense vegetation, more graminoid cover, large areas

- **Modeling**
 - Guideline for complex systems
 - Manage for a mosaic landscape

- **Sedge wren**
 - Regional declines, affecting local abundance
 - Edge of range
 - Nomadic
Conclusion: Ft. Drum’s mission & OGBB

- Good practices will benefit the military:
 - Mow, no dormant season burns
 - Manage and train rotationally
 - more habitat diversity for training and OGBB
- Large grassland habitat
 - training only in portions and not continuous
- OGBB are used to disturbances
 - their niche is a disturbance mediated system
- Cooperative management
The ITAM issue

- ITAM – Integrated Training Area Management
 - Those who mow
- No communication or cooperation
- Wildlife management practices would even benefit ITAM’s objectives
Acknowledgements

- Special thanks to:
 - Dr. Norment
 - Dr. Wilcox
 - Dr. Norris
 - Ariel Kirk
 - Kristine Carlson

- And to:
 - Raymond Rainbolt and Jeffery Bolsinger,
 - US Department of Fish and Wildlife, Fort Drum, NY
Questions?

Well, I probably won’t be able to convince all of you to save the birds