Carbon sequestration in a 25-year-old tree-based intercropping system in Southwestern Ontario
• Exponentially growing populations
• Rising atmospheric CO2 levels
• Degrading land and soil quality
Amy Wotherspoon,
[Mohammed I., Thevathasan, N.V., Gordon, A.M., & Voroney, P.]

School of Environmental Sciences, University of Guelph, Guelph, ON
Carbon sequestration in a 25-year-old tree-based intercropping system in Southwestern Ontario
Tree-Based Intercropping (TBI)

Proven to have many ecological and economical benefits.
TBI in southwestern Ontario...

- Agricultural crops grown between widely spaced tree rows
- Variety of tree species and agricultural crops
Proven to have many ecological and economical benefits
Tree biomass takes in carbon from the atmosphere to act as a carbon sink

$\text{[sequestration]} = \text{[photosynthesis]} \times \text{[respiration]}$

TBI to mitigate climate change
Tree biomass takes in carbon from the atmosphere to act as a carbon sink

\[C[\text{sequestration}] = C[\text{photosynthesis}] - C[\text{respiration}] \]
Trees provide litterfall that act as a natural source of C and N to reduce need of fertilizer and chemicals and thus GHGs!
C and N improve longevity of soil to reduce the need of clearing more land for agriculture.

Can also be planted on remedial/degraded land to improve soil conditions for agriculture later.
Gaps in Research

• Lack of empirical data for TBI systems
• Doesn't always consider belowground C pools
• What do these systems look like after 25 years?
My research topic

• Can TBI systems sequester more carbon than conventional agricultural systems in southwestern Ontario?
Research Objectives

- Quantify above- and belowground C pools in tree biomass and soil organic carbon (SOC)
- Measure quantity and quality of carbon fluxes
- Model C sequestration potential of a 25 year old TBI system compared to conventional agricultural systems
Quantify above- and belowground C pools in tree biomass and soil organic carbon (SOC)
Measure quantity and quality of carbon fluxes
Model C sequestration potential of a 25 year old TBI system compared to conventional agricultural systems
Research in Guelph, Ontario

Guelph Agroforestry Research Station
30 ha site, established 1987
Soil: sandy loam; calcareous parent material
Density: 111 trees/ha; RCBD
Research in Guelph, Ontario

Guelph Agroforestry Research Station
- 30 ha site, established 1987
- Soil: sandy loam; calcareous parent material
- Density: 111 trees/ha; RCBD
Poplar hybrid
Populus sp.

Red oak
Quercus rubra

Black Walnut
Juglans nigra

Norway spruce
Picea abies

White cedar
Thuja occidentalis

Maize
Zea mays

Soybean
Glycine max

Winter Wheat
Triticum aestivum

Barley
Hordeum vulgare
Above- and belowground C

Soil Significance
- Importance of understanding soil properties for ecosystem health
- SOC changes indicate the soil and climate conditions
- Soil structure affects water holding capacity and nutrient availability

SOC Results
- Average C concentration (%) vs. SOC stock (g/m²)
- Higher SOC concentration:
 - East direction (predominantly wind)
 - Close to the tree (0.5 m)
 - At shallower surfaces (0.6 m)
- Lower SOC stock:
 - East direction, predominantly wind
 - Close to the tree (0.5 m)
 - At deeper surfaces (2.0 m)

Tree Biomass Significance
- Faster growing tree species sequester more carbon in less time
- Allometric equations can act as growth models and predict C sequestration potential
 - \(y = ax \)
 - \(y \): biomass
 - \(x \): measurable variable (e.g., DBH, height)
 - \(a, b \): species-specific coefficients

Soil Organic Carbon
- Key factors contributing to SOC:
 - Tree species
 - Soil type
 - Management practices
- Long-term management strategies
 - Incorporate SOC into soil management plans
 - Monitor and adjust SOC levels over time
Above-ground:
- Destructive sampling of 3 trees per species
- Measure DBH, height, and mass of woody components
- Subsamples for C analysis

Below-ground:
- 2m² root excavation
- Weighed total root biomass
- Subsamples for C analysis
Tree Biomass Results

To determine C Content

- Determine above and belowground tree biomass
- Account for moisture content
- Calculating C content from subsamples (predicting to be ~50% C)
Carbon content (kg) for five species from a 27 year old TBI system

- Hybrid Poplar
- Black Walnut
- Red Oak
- Norway Spruce
- White Cedar

Legend:
- Blue: Belowground
- Red: Aboveground
Tree Biomass Significance

- Faster growing tree species sequester more carbon in less time.
- Allometric equations can act as growth models and predict C sequestration potential.
 - $y = ab^x$
 - y: biomass
 - x: measurable variable (i.e. DBH, height)
 - a, b: species-specific coefficients
Soil Organic Carbon

Soil samples collected:
- Depths: 0-10cm, 10-20cm, 20-40cm
- Distances: 0.5m, 1.0, 1.5m, 2.0m
- Directions: east and west
- = 72 samples per tree

Fumigated soil with 12 M HCl for 7 days to remove inorganic carbon

Analyzed for SOC with LECO CR-12 Carbon Analyzer
SOC Results

Average OC concentration (%) vs. SOC stock (g/cm²)

Higher OC Concentration:
- East direction (predominant wind)
- Closer to the tree row (0.5 m)
- At shallower surfaces (0-10 cm)

Higher SOC stock:
- East direction (predominant wind)
- Closer to the tree row (0.5 m)
- At deeper surfaces (20-40 cm)
Higher OC Concentration:

- East direction (predominant wind)
- Closer to the tree row (0.5 m)
- At shallower surfaces (0-10 cm)
Higher SOC stock:

- East direction (predominant wind)
- Closer to the tree row (0.5 m)
- At deeper surfaces (20-40 cm)
Soil Significance

- Importance of establishing TBI systems in the predominant wind direction

- SOC closest to the tree row can compensate for tree shading
- SOC within the top 40 cm of soil is beneficial for crop roots and nutrient uptake

- Improves long term soil conditions, crop yields, and long term stability of SOC in TBI systems
Soil Significance

• Importance of establishing TBI systems in the predominant wind direction

• SOC closest to the tree row can compensate for tree shading

• SOC within the top 40 cm of soil is beneficial for crop roots and nutrient uptake

• Improves long term soil conditions, crop yields, and long term stability of SOC in TBI systems
Above- and belowground C

- Detailed sampling of 3 trees per species
- 5 traits: DBH, height, and other woody parameters
- Subsamples for C analysis

Tree Biomass Significance

- Faster growing tree species sequester more carbon in less time
- Allometric equations can aid in growth models and predict C sequestration potential
 - $y = m b^x$
 - y: biomass
 - x: measurable variable (e.g., DBH, height)

SOC Results

- Average OC concentration (%) vs SOC stock (g/m²)

Soil Organic Carbon

- Sampled in October
- 3 replicates: 3, 5, 10
- Statistical tests performed
- 65 samples, 3 replicates
- Analysed for SOC in April 2023
- Kept in airtight container

Tree Biomass Significance

- Faster growing tree species sequester more carbon in less time
- Allometric equations can aid in growth models and predict C sequestration potential
 - $y = m b^x$
 - y: biomass
 - x: measurable variable (e.g., DBH, height)
Next Steps...
Litter Decomposition
Modeling

- Combine above- and belowground C pools and fluxes to model C sequestration potential of TBI system over 25 years
25 years

Diagram showing the carbon cycle including:
- Atmosphere
- Assimilation by Trees
- Assimilation by Crops
- Soil Respiration
- C removal from crop harvest
- Harvest/Storage in Wood Products
- Long term SOC accumulation
- Leaching Carbon

Key components:
- Aboveground Tree C
- Belowground Tree C
- C in crops above-ground
- C in crops below-ground
- Litterfall
- 15m
- 20 cm

Diagram illustrates the flow of carbon through different components of the ecosystem.
Expected Results

• Higher C sequestration vs. conventional agriculture
• Newly formed allometric equations to predict growth and sequestration
• Higher carbon inputs
• Higher concentrations of SOC
Who Cares?

Future Generations
- Land management and amelioration
- Sustainable agricultural practices
- Food security

Government
- Meet climate change goals through C sequestration and reduction of GHG
- Provide tax incentives and C credits to land owners

Policy Makers
- Develop models to improve human estimates
- Improve accuracy of our predictions

Land Owners
- Benefits of Till
- Application of modeling systems for C credits
Land Owners

- Benefits of TBI
- Application of modeling systems for C credits
Policy Makers

- Develop models to improve biomass estimates
- Improve accuracy of our predictions
Government

- Meet climate change goals through C sequestration and reduction of GHG
- Provide tax incentives and C credits to land-owners
Future Generations

- Land management and amelioration
- Sustainable agricultural practices
- Food security
Thank you!