8-16-2006

Families of graph

Pablo Lopez
The College at Brockport

Follow this and additional works at: https://digitalcommons.brockport.edu/cmst_lessonplans

Part of the Physical Sciences and Mathematics Commons, and the Science and Mathematics Education Commons

Repository Citation
https://digitalcommons.brockport.edu/cmst_lessonplans/180

This Lesson Plan is brought to you for free and open access by the CMST Institute at Digital Commons @Brockport. It has been accepted for inclusion in Lesson Plans by an authorized administrator of Digital Commons @Brockport. For more information, please contact digitalcommons@brockport.edu.
Generic Lesson Plan Template

You should submit this form in addition to any computer generated files/documents/models to your group folder on Angel. Please create a .zip file and upload the group of files as a single archive.

<table>
<thead>
<tr>
<th>Name: Pablo Lopez</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade level(s)/Subject taught: 9 Algebra A</td>
</tr>
<tr>
<td>Objectives:</td>
</tr>
<tr>
<td>Student will be able to identify families of graph.</td>
</tr>
</tbody>
</table>

Please provide a rich **one-page, single-spaced**, description or a **vision** of your best thinking on a way or ways you might teach the planned lesson. (approximately ½ page for the teacher role, ½ page for the student role). Also, construct a tentative rubric that you might use with your students (see example)

Items to include in your lesson plan: (Choose your discipline/concepts from your own area).

1. **Write the Mathematical Concept** or “key idea” that modeling will be used to teach: (e.g. Students use mathematical modeling/multiple representation to provide a means of presenting, interpreting, communicating, and connecting mathematical information and relationships)

 Student use mathematical modeling/multiple representation to provide a mean of presenting, interpreting, communicating, and connecting mathematical information and relationship.

 and/or…

1b. **Write the Science Concept** or “key idea” that modeling will be used to teach: (e.g. Organisms maintain a dynamic equilibrium that sustains life).

Materials:

- Graphic Calculator
- Grid Paper
- Pencils.
"…a rich one-page, single-spaced, description or a vision of your best thinking…"

Prompts:
1. How will you assess the prior knowledge of the student?
2. How will you begin the lesson?
3. What are the teacher and students doing every 5-10 minutes? (Teacher Actions and Student Actions
4. How will you assess the learning for the lesson?

- **Using Graphic Calculator TI 84 I plan on having my students…**

 Warming up plotting point in grid paper and connecting them to form lines, with this I will make sure they know how to locate points and draw lines in the coordinate plane.

 After that I will give them a worksheet with different line equations and some question included, then I will ask them to use their **graphic calculators** to graph the first set of equations: $y = x$, $y = 2x$, $y = 3x$ and $y = 4x$, I will walk in the classroom to see if the student are working appropriately and check for understanding, I will use the LCD projector to graph the same equations (modeling) using the **TI smart view** and then I will ask to write in their worksheet the similarities and differences among the lines, I will ask some students to share their finding and I will write it in the overhead. Then the student will be asked to write a description of this family of lines as well as the characteristics that the lines have in common and to state how the lines are different.

 I will explain the students that this lines are of the form $y = mx$. Then I will ask the student to graph in their **graphic calculator** steeper lines and I will ask the students to write what happen when the absolute value of m increase or decrease.

 Next I will ask the student to graph the second set of lines: $y = -x$, $y = -2x$, $y = -3x$ and $y = -4x$. The students will respond the same questions asked for the first set of equations in their worksheet.

 I will use the second set equations and questions to check for understanding. Worksheet will be turned in at he end of the class.

 RUBRICS

 Subject: Algebra A
 Grade: 9
 Scale: 3

 2 Student fully understands the concept and graphs the lines in the graphic calculator correctly.

 1 Student has some misconceptions and some difficulty graphing the lines in the calculator.

 0 Student shown no work and have many problems graphing the lines in the graphing calculator.
ample: “I was thinking about beginning the class on [modeling X] by using the overhead to ask students what know about X. From this brainstorming session, I might ask them to get into groups and discuss one or more of fea they gave me. After about ten minutes, I would have the students give their ideas on X and write them down transparency so they would be able to see them for the entire hour. From here, I would provide a 10 to 15 minute intruction of the basics of using _______________modeling software. I would use an conceptual example hey would find familiar with such as getting a cold and how it is transmitted. From here, I would have students at computer stations using a prepared guide or tutorial to get them started on basic software usage. I expect that is a time a number of students would “catch on” rather quickly and be able to help others. By the third n, I suspect that most would be well on their way to development of their own or small group models using the ______________software. My plan of assessment would probably be a group model so they would gain more dence in using the software in a meaningful way. After the second or third lesson, I would ask them to choose a list of thematic or topic areas that fit the software nice and develop a model using the technology. As a product, I have partners share their model and describe to other small groups how it works. The rubric I design would be ral at first so that I might see what kinds of the products the student were capable of creating. From the types, I would hone my rubric to make the modeling product as challenging as possible without making it too ult.” Etc…