Hybrid Solar Cells Based on Amorphous Silicon and P3HT Heterojunction

William Marin, Alok Rastogi

Electrical and Computer Engineering Department and Center for Autonomous Solar Power (CASP)

Binghamton University, State University of New York, Binghamton, NY 13902

Introduction

• Organic/inorganic hybrid solar cells combine the absorption, low-cost and processability characteristics of polymers with the environmental stability and carrier mobility properties of inorganic semiconductors

• Poly(3-hexylthiophene) (P3HT) and poly(6,6-phenyl C61-butyric acid methyl ester) (PCBM) have been the polymers predominantly used in most organic photovoltaics. Amorphous silicon (a-Si) is regarded as a good candidate as inorganic material. It is abundant, non-toxic and can be deposited as thin films or patterned into nanostructures by simple processes

• The hybrid solar cells presented are formed by the flat heterojunction between an organic electron donor (P3HT) and n-type amorphous silicon as the inorganic electron acceptor. Devices with a blend of P3HT and PCBM have also been studied. The following structures have been fabricated:
 A. ITO/PEDOT/P3HT/a-Si(n)/Ag
 B. ITO/PEDOT/P3HT:PCBM/a-Si(n)/Ag
 C. ITO/a-Si(n)/P3HT/Ag
 D. ITO/a-Si(n)/P3HT:PCBM/Ag

Schematic view of standard (top) and inverted (bottom) cells. ITO and silver are front and back electrodes, respectively. P3HT is the photovoltaic material on devices A and C while P3HT:PCBM blend is that of devices B and D. N-type amorphous silicon (a-Si(n)) was deposited by RF sputtering. PEDOT:PSS is used as a hole transfer layer

• The cells have been studied by means of their current-voltage (I-V) characteristic, transmission measurements and quantum efficiency (QE). This study presents for the first time the impedance spectroscopy characterization of the a-Si(n)/P3HT interface. From this, CV measurements, circuit models and further electronic characterization has been obtained

Device Fabrication

 • Substrate Cleaning Procedure
 • a-Si(n) Sputtering
 • P3HT or P3HT:PCBM Spin Coating
 • Ag Thermal Evaporation

Experimental Details

Device Fabrication

 • Substrate Cleaning Procedure
 • a-Si(n) Sputtering
 • P3HT or P3HT:PCBM Spin Coating
 • Ag Thermal Evaporation

Characterization

 • I-V Characteristic
 • Impedance Measurements
 • C-V Measurements
 • Transmission Measurements
 • QE Measurements

Optical Characteristics

I-V and C-V Characteristics

Impedance Measurements

Results and Discussion

Optical Characteristics

I-V and C-V Characteristics

Impedance Measurements

Experimental and fits for RCPE model for an impedance spectrum at +0.5V in the dark. Impedance Bode and phase diagrams

The table shows fitting results for the RC and RCPE models from the fits shown above

Conclusion

• Fabricated hybrid solar cells and analyzed their optical and electrical characteristics

• Impedance spectroscopy has been performed and the a-Si(n)/P3HT interface has been characterized

• Results from this study reveals a behavior close to that of organic solar cells

References

Impedance spectroscopy of optimized standard and inverted P3HT:PCBM organic solar cells
Hybrid solar cells based on thin-film silicon and P3HT
Amorphous-silicon/polymer solar cells and key design rules for hybrid solar cells