Some Reflections on Existence

Hector-Neri Castaneda
Indiana University

Follow this and additional works at: https://digitalcommons.brockport.edu/phil_ex

Part of the Philosophy Commons

Repository Citation
Available at: https://digitalcommons.brockport.edu/phil_ex/vol11/iss1/4

This Article is brought to you for free and open access by Digital Commons @Brockport. It has been accepted for inclusion in Philosophic Exchange by an authorized editor of Digital Commons @Brockport. For more information, please contact digitalcommons@brockport.edu.
HECTOR—NERI CASTANEDA
Professor of Philosophy
Indiana University
Some Reflections on Existence

by

Hector-Neri Castaneda

0. This is a preliminary to a draft of a future paper, which will be a third introduction to my "Thinking and the Structure of the World," Philosophia, 4 (1974): 3-40.1 This preliminary is written for discussion at the meeting of the Ontology Discussion Group in connection with the 1975 Western Division Meetings of the American Philosophical Association. It consists of two parts. In Part I there is a schedule of some puzzles about existence: they are the data to be taken into account by the theory of existence and individuals outlined in Part II.

Part I

1. The concept of existence is one of the most fundamental concepts. Its fundamentality is exhibited by the many perplexities that reflection on existence produces. Here I will discuss some of them briefly, mostly as a reminder, so to speak, and in order to have something concrete to motivate the account to be developed. By existence I mean here existence of ordinary particulars, whether physical or mental. Usually the discussions of existence deal with the problem of the reality (or existence, if you wish) of universals or other abstract entities, or within the ontological status of fictional entities. My topic is exclusively the reality of concrete particulars, those which typically come to be and cease to exist, the ordinary ones as above mentioned. For all we care in this paper we can say that universals and abstract particulars exist, but it will be convenient to say here that they subsist, so that our use of 'existence' is less confusing. On the other hand, fictional entities are not entirely out of our present purview. There are abstract fictional individuals, if individuals they are, like the second even number between 7 and 9 and the third prime number greater than 4 that is also even. But we will not be concerned with them. Nor will we be concerned with fictional abstract individuals, again if such they are, like the 1800 Volkswagen with automatic transmission. But there are concrete individuals that are also fictional like the second wife of Jesus of Nazareth and the third son of Napoleon I, who was also a King of Rome. There are concrete fictional tigers, as we shall see. I hope that these brief remarks will suffice to provide at least a partial demarcation of the subject matter of this discussion. (I wish there were time to engage in a protracted Moorean characterization of some paradigm examples for discussion.)

2. Our subject is existence, the reality of concrete individuals. But our topic is only the nature or structure of existence. Our goal is to characterize existence in contrast to everything else by providing some of its basic laws. Since every law presupposes an internal structure of the entities the law is about, the laws of existence require that we investigate the basic structure of existence and of the propositions or states of affairs in which existence is involved. A clue to this comes from the many puzzles about existence.

3. A very crucial datum about the nature of existence was provided by G.E. Moore. You remember Moore's "Is Existence a Predicate?," Aristotelian Society
The sentence ‘Tame tigers growl’ seems to me ambiguous. So far as I can see, it might mean ‘All tame tigers growl’, or it might mean merely ‘Some tame tigers growl’, or ‘Most tame tigers growl’. Each of these three sentences has a clear meaning, and the meaning of each is clearly different from that of either of the two others. But I do not think that there is any ambiguity in ‘Tame tigers exist’ corresponding to that which I have pointed out in ‘Tame tigers growl’. So far as I can see ‘Tame tigers exist’ and ‘Some tame tigers exist’ are merely two different ways of expressing exactly the same proposition. ...It [‘Tame tigers exist’] always means just ‘Some tame tigers exist’, and nothing else whatever. (p. 117; my italics.)

Then Moore goes on to claim that ‘Some tame tigers do not exist’ is meaningless if ‘exist’ is used in the same sense as in ‘Tame tigers exist’. But I will not discuss this beyond pointing out that this reader has got the striking impression that Moore is there inclined to call a sentence meaningless, not because it is an unintelligible string of words, but because it cannot be true, or it cannot be false, that is, more accurately, because the proposition it expresses is necessary—and this comes to the view that the proposition expressed by ‘Some tame tigers do not exist’, which is exactly the same as that expressed by ‘Tame tigers do not exist’, is necessarily true or necessarily false. And this is an additional puzzle and datum.

3.1 Our first datum is Moore’s first and primary point, namely, that ‘Tigers exist’ and ‘Some tigers exist’ express exactly the same proposition. This is a very shrewd observation. It contrasts neatly with the fact that the sentence ‘Men are mortal’, as used in normal life, expresses the same proposition as the sentence ‘All men are mortal’. This is, in general, true of sentences of the form ‘A’s are B’s’ where being A necessitates being B. But clearly being a tiger (and, generally, for an empirical property being A, being A) does not necessitate being existing. Thus, in the empirical case *A’s exist* is the same proposition as *Some A’s exist* -- using asterick quotes around a sentence to form the name of a proposition expressed by the sentence in question.

Now, Moore’s observation invites the natural question, which is pregnant with suggestions: And what about the other tigers? We will have more to say about those other tigers later on.

3.2 Our second datum is Moore’s observed “meaninglessness” of ‘Tigers do not exist’. As noted, this seems to be the necessity i.e., the necessary truth or necessary falsehood of the proposition *Tigers do not exist* -- and of its negation. But Moore did not see a possible ambiguity in the sentence ‘Tigers do not exist’, which ambiguity consists in two ways of understanding the scope of the negation expressed by ‘not’ in that sentence. Given Moore’s shrewd observation that *Tigers exist* is the same proposition as *Some tigers exist*, the sentence ‘Some tigers do not exist’ can have a negation in the scope of the particular (not existential, nor yet in any case) quantifier expressed by ‘some’. There are, then, two propositions that could be called negations of...
(1) Tigers exist, namely:

(2) It is not the case that some tigers exist

and

(3) Some tigers do-not-exist.

That there are such propositions can be argued on the grounds of a principle of the closure of negation, given that ‘(Some) tigers exist’ expresses a proposition. At any rate, the question is: Which of the sentences after ‘(2)’ and ‘(3)’ is ‘meaningless’ in Moore’s sense, i.e. which of the propositions (2) and (3) is the one he intimates (or his discussion intimates) that is necessary? That is to say, which of the propositions (2) and (3) is our proposition *Tigers do-not-exist*, whose contradictory is not (1), but

(4) It is not the case that some tigers do-not-exist, which is equivalent to:

(5) All tigers exist.

Both (3) and (5) are “meaningless” in Moore’s sense. Hence, one is necessarily true and the other is necessarily false. Since the point of the contingency of (1) is precisely the contingency of an instance of (5), it seems then that (5) is the necessarily false proposition. If it were necessarily true, then the truth of (1) would follow automatically by the standard instantiation of the universal quantifier in a non-empty domain of discourse. Yet the truth of proposition (1) is an exciting truth that makes the world (the totality of real individuals) what it is. The non-emptiness of the universe of discourse is not an issue. The truth of (3) takes care of that. But there are more profound reasons for the non-emptiness of the universe of discourse, as we shall see later on.

A little reflection shows that (3) must be true, once we allow for all thinkable tigers. Those tigers with contradictory properties are bound not to exist.

3.3 Joseph Gilbert has commented on the Aristotelian principle about the square of opposition (SA): two corresponding sub-altamates cannot both be false – yet neither one is necessary. Thus at least one of “Some A is B” and “Some A is not B” is true. Gilbert observes that “Some existing A does not exist” is self-contradictory. Hence by SA “Some existing A exists” is necessarily true, which is paradoxical. This is explained by the fact that in Aristotelian logic all terms (i.e., predicates) are non-empty, so that in Aristotelian logic existence is not a term (or predicate). On the other hand, if, more realistically, we allowed empty terms, then SA is false. Clearly, if there are no A’s both “Some A’s are B’s” and “Some A’s are not B’s” are false, if we understand ‘some’ as ‘there are’. Hence we can recognize that ‘Some existent A is non-existing (or does not exist)’ is self-contradictory even if ‘Some existent A exists’ is contingent.

3.4. In conclusion, Moore’s existential data (as I will say) suggests very powerfully that the total domain of discourse we have at the back of our minds in our daily transactions includes both existing and non-existing tigers. Existence is, it seems, a property or a trait or a characteristic (choose your word) of only one subset of the entities we deal with in our daily experience. Furthermore, it is necessarily true that some tigers do not exist, and, by similar considerations, it is necessarily true
that the universe of discourse of daily experiences have non-existing elephants, pterosaurs, etc. Since the proposition *Tigers exist* is not the same as the proposition *Most tigers exist*, there must be, then, either more non-existing tigers than existing ones, or their amounts are the same.

4. My second set of data comes from Kant’s well known principle that ...the real contains no more than the merely possible. (Critique of Pure Reason, A599/B627.)

This is, of course, a mysterious principle. Kant did attempt to clarify it, and in so doing he said something very much worth pondering about:

By whatever and by however many predicates I may think a thing —even if completely determined — I do not make the least addition to the thing when I further declare that this thing exists. Otherwise, it would not be exactly the same thing that exists, but something more than what I have thought in the concept, and I could not say that the exact object of my concept exists. (A600/B628; my italics.)

4.1 There are several important elements in Kant’s discussion. The first one is about reality having exactly the same object that has been thought of. This theme has often been neglected, yet it is of crucial importance, not only when it comes to whether reality agrees with our conceptions of it, but particularly when we engage in practical thinking. When we formulate plans and engage in carrying out our plans it is of the utmost importance that we bring about, or help bring into existence, exactly what we had contemplated or had expected to bring about. Here is a datum that Kant did not consider, but we must take into account. Suppose that you are planning to make a beautiful object, e.g., a painting, a book, a computer, or a chair. Characteristically, our plans include the contemplation, in an obvious sense, of incomplete (possible) objects. Regardless of how carefully you go into the details of the object you want to create, your actual creation will have many more properties than you were able to conceive. We may agree that this is simply a limitation pertaining to our finite nature, and that infinite minds, like God’s or the Arch-angel Gabriel’s, do not face this predicament. The fact is, however, that the ordinary and the extraordinary minds of this world are all finite. And we must live the tension between the need for bringing into existence exactly the objects we plan to bring into existence, and our ontological inability to do so. This is at the very least the problem of accounting for the exactitude that our plans can attain, and that problem is within the field of problems pertaining to existence.

4.2 Kant, however, was not interested in practical thinking when he discussed the ontological argument. He had something more profound in view. He had in mind the crucial feature of existence of not being constitutive of an object — even if the object is completely determined. He had in mind a contrast between the real properties of an object which are somehow internal to the object, and existence, which is external to the object:

Whatever, therefore, and however much, our concept of an object may contain, we must go outside it, if we are to ascribe existence to it. (A601/B629; my italics.)

This contrast between internal properties and external existence is something that Kant never clarified, but it is evidently clear that for Kant existence does not add anything to the content of an object, not because it is an empty concept, and not
because it is a sort of dependent property, a consequential property. Consequential properties, like being red, are internal to the object just as much as the properties on which they are consequences, e.g., the particular shade of red in the latest issue of NOUS. Existence is not a property that supervenes to an object by having a certain nature. Existence is supervenient in that it accrues to the whole object that exists, but as Kant tells us, it is something external to the object. This internal/external contrast has to do with what we must think when we think an object and what the object gains by being part of reality.

4.3 A third element in Kant's discussion is what existence does to an object. As he says, while one hundred dollars in the mind are exactly the same as one hundred dollars in my pocket, when what is in my mind is realized, the latter affects my financial situation in a way entirely beyond the scope of the former. So either the former are not exactly the same as the latter, or the former have gained an important property: that is, it seems as if the existence of a thing is really the only property of the thing that counts. It is something that has to be added to the merely possible 100 dollars in my mind. Existence is the ultimate substance of the world. And this needs elucidating.

4.4 Palpably, none of the points that Kant makes about existence is affected by the truth of propositions like *There is (exists) a prime number* and *There exist properties under the genus coloredness*. These propositions do not involve existence, as we characterize it above in Section 1. Kant's existential data includes, therefore: (1) the contrast between the finitude of most of the merely possible objects as they appear to the mind and the infinitude of the real objects; (2) the puzzle about the existing being exactly the same as what has been envisaged or expected; (3) the contrast between the internality of predication of properties and the externality of the possession of existence; (4) the absolute non-emptiness and non-triviality of existence. It is clear, I hope, that Kant's discussion of the ontological argument is insightful, not because it furnishes a view of existence, but because it performs the proto-philosophical job of collecting philosophical data very well. I could extract other data from his discussion, but I believe that the four data just listed are obviously profound and difficult and are crying out for a theory of both individuation and existence.

5. The crucial distinction between internal predication and external existence adumbrated by Kant comes to play a large role in the dispute between Meinong and Russell. As you remember, Meinong's ontology includes not only possible objects but impossible ones. One of his favorite examples was the round square. Meinong developed quite well Kant's merely-adumbrated finite or incomplete objects. That is one of Meinong's accomplishments. But he blurred this accomplishment by identifying incomplete objects with universals. Thus, on his view every sphere contains the incomplete object the sphere. This is, as I hope to show in this paper, a catastrophic confusion -- as you may expect from any blurring of the distinction between particulars and universals.

5.1 Now, for Meinong the round square is round, and it is also square, which implies that it is not round, thought Russell. And this led, Russell held, to the contradiction that the round square is both round and not round. Here Meinong could, but did not, reply that the proposition *The round
square is square* does not imply the proposition *The round square is not round*--and his failure to do so is evidence of the underdevelopment of his insights.

But aside from that implication, Russell took up a simpler example: the case of the existing round square. Clearly, Meinong was committed to the truth of *The existing round square is existing*, and he said so. On the other hand, because of the incompatibility of roundness and squareness, Meinong was committed to the non-existence of the round square, and he said that *The existing square does not exist* is true. And he held firmly to the view that:

(11) The existing round square is existing

and

(12) The existing round square does not exist

are not incompatible. As you undoubtedly remember, Russell claimed that he could not find any difference between (11) and (13) below:

(13) The existing round square exists.

Hence, Russell could not see the non-contradictoriness between (11) and (12). Thus lost Meinong his battle with Russell on the existing round square--or so our predecessors have thought. It seems to me that Meinong was right in claiming that existence enters in two different ways in propositions (11) and (13). He actually went on to speak of a property of existence, which was an allusion to an internal predication--in perfect line with Kant's conception of properties. The point, then, that Meinong had in mind, not too clearly, is this: Proposition (13) attributes externally existence to the existing round square, and is thus false; while (11) attributes internally existence to the same existing round square, and it is true--as anybody can readily see.

5.2 Meinong's reply to Russell is really only a dramatic way of emphasizing Kant's datum (3) in Section 4.4. In general, Meinong's impossible objects bring out, more forcefully than anything before his discussion, the need for distinguishing between internal predication and external possession of existence or relations like identity. Consider the Meinongian incomplete object the thing that is not self-identical. Clearly there are the true propositions *The thing that is not self-identical is identical with itself* and *The thing that is not self-identical is a thing not self-identical*. These propositions are not each other's contradictory. Again, the problem is solved by viewing the former as having external predication, and the latter as involving internal predication. This resolution of the puzzle has the additional consequence that identity and, equality are external relations--of the same general family as existence. This is why it is not at all surprising that Meinong could claim that all objects, whether existing or not, are self-identical, while Russell equated existence with self-identity.

6. The puzzle of negative existentials is too well-known to rehearse here. It is clear that we want to analyze the proposition *Faffner did not exist* (to use Richard Cartwright's example) as about Faffner and as having the same sense of 'exist' that appears in *Faffner existed*.

7. Fictional entities create several problems. We have all felt at some time or other the urge to consider fiction as a special mode of discourse, bracketed from reality, so that each word in a fiction piece can have the same meaning as it has outside fiction, yet the whole thing being deprived of existential import. But we all know that this bracketing is of very little value, even though there may be good
reasons for considering each story as a description under a unique story operator. The main problem lies in that we live in a world that has a masterful unity. Our fictional heroes are sometimes identical (or so it very much seems) with our real heroes. Hence we must have quantifiers that range over both contexts about real events and contexts about fictional events. We must understand the structure of our experience of the world in which that unity of fiction and reality is a fact. This is a powerful piece of evidence for the view that in the ordinary rich world of our daily experience we need possible objects, and existence is a property of them—just as Moore saw—but it must be an external property—just as Kant saw.

8. There are many other types of data which suggest that existence is a property, that existence is external, that existence is the substance of the world, that existence is not to be equated with identity, that our experience cannot be understood fully without fastening to such principles as these. But I will not gather more data. It is clear that we need a fundamental ontological account that makes the proper distinctions listed, and elucidates in particular the contrast between internal and external predication. Perhaps it may not be amiss to stress that we need an account that considers all the data, including the ones not discussed here. But any theory that takes into account less than the data discussed here is certainly inadequate. We should be wary by now of theorists who, under the vague idea of simplicity, build on simple data. Our slogan is: COMPLICATE; WHEN IN DOUBT, COMPLICATE! We want complex and complicated data in order to construct simple, but comprehensive theories.

Part II

The Ontology of Individual Guises: Informal Presentation

1. Ontological atoms

In good old Platonic style, let us take properties by themselves, i.e., separated from particulars, to be the ultimate components of the world. There is a verbal issue as to whether quantifiers are properties. To avoid it, let us say that the ultimate components of the world are Forms, and these divide into properties and operators. The former are ranked into monadic, dyadic, triadic, ..., in short, n-adic properties for any natural number n.

Among the operators are those that operate on properties yielding complex properties. Some, like non-vacuous quantifiers, diminish the n-adic rank of properties. Others, like logical connections, increase the rank of a property. Individuals are also operators that diminish a property's rank. (Formally, the most elementary mechanisms of property composition can be neatly described by systems of quantification that use operators signs instead of variables as, e.g., in Quine's "Variables Explained Away".)

For convenience we shall use variables of quantification. Ontologically, we can regard the introduction of variables, let us call it variabilization, as the operation that transforms abstract properties into propositional functions, which are the concrete properties entering in the composition of individuals. But this is not crucial.
2. Individuals

There is one operator, let us represent it by braces, that operates on entities and form sets. The primary sets are composed of concrete properties. Sets are abstract individuals.

Another operator, let us represent it by \(\£ \), operates on sets of Monadic properties (or propositional functions), whether simple or complex, and yields concrete individuals or individual guises. From now on 'individual' means concrete individual or individual guise. These are, roughly, Frege's senses of definite descriptions. For example, the round square is the individual \(\£ \{ \text{being round and square} \} \). The individual composed of the properties roundness and squareness is \(\£ \{ \text{being round, being square} \} \). They are different because the sets of properties composing them are different: the former is a unit set, the latter is a pair. There is, of course, an intimate connection between them, and we discuss it in \(\dagger 6 \) below.

Suppose that, as it seems likely, the round square was Meinong's favorite impossible object. That is to say, consider the individual \(\£ \{ \text{being Meinong's favorite impossible object} \} \). That is, obviously, quite a different individual from the \(\£ \{ \text{being round and square} \} \). Thus, the italicised occurrence of the word 'was' in the first sentence of this paragraph does not express genuine identity. We shall say more about identity below.

3. Internal predication

An individual is in an obvious sense a cluster of properties. Most of them are finite clusters. Clearly whatever property \(F \)-ness we consider, the \(F \) is \(F \), and necessarily so, if 'is' is meant in the sense of ontological composition. Thus, Meinong's persistent claim that "the \(F \) is \(F \)" is analytically, or logically, true, is correct in the primary sense of 'is'. Here I am using 'the \(F \)' as short for 'the individual which is only \(F \)', i.e., as \(\£ \{ \text{being } F \} \).

Let us call the primary predication internal predication, and let us represent it by expressions of the form "\(a(F) \)" where 'a' denotes an individual and 'F' a property. Thus, the proposition expressed by a sentence of such a form is true, if and only if the property denoted by 'F' is a member of the set of properties constituting the individual denoted by 'a'.

Many of us have an inclination to think that Mount Everest neither possesses the property of being an even number nor possesses the property of not-being an even number, even though the two properties seem to be mutually exclusive. This inclination is at bottom an intuition of the primary internal predication. Evidently, for any property \(F \)-ness we consider, many concrete individuals do not include in their constituting set the property \(F \)-ness or its denial not-\(F \)-ness.

We also have an inclination to say that for any property \(F \)-ness anything has \(F \)-ness or has not \(F \)-ness. That inclination is the intuition that in our confrontation with the world we also use another conception of predication. We discuss it below in \(\dagger 5 \).
4. Identity

Genuine identity is as it is normally conceived to be. It is a very special dyadic relation, which is reflexive and is governed by Leibniz's Law of the indiscernibility of identicals. In short, we have the following two fundamental ontological principles:

1d.1. \(x = x \)

1d.2a. \((x = y) = (x(F) = y(F)) \)

Entering in a fact is, of course, not a property. But identity requires the fact-indiscernibility of identicals. Let \(\varphi[a] \) express a fact, simple or complex, in which the individual denoted by 'a' enters and \(\varphi[a/b] \) the same fact with the individual denoted by 'b' entering in some positions in that fact instead of the individual denoted by 'a'. Then we have the law:

1d.2b. \((x = y) \supset (\varphi[a] = \varphi[a/b]) \)

5. Actuality

Actuality, which accrues to concrete individuals, is most mysterious. It is the ultimate act, in Aristotle's sense that contrasts act with potentiality, and lies wholly outside the realm of abstracts. (Note that as Plato observed, the realm of abstracts is so comfortable to the mind that it looks like its natural habitat.) Actuality must, of course, be at least obscurely and partially apprehensible. Otherwise, there would not even be a reference to a real world. Actuality has to be thinkable, and this means that there is a Form, a sort of property, under which it is conceivable. This suggests another form of predication, connecting a concrete individual with other properties, which do not constitute it. Now, the previous characterization of an individual makes an individual bounded, determined exactly by a set of properties which may be finite and, hence, is not even closed under logical implication. Thus, actuality must not only connect an individual to other properties not in it, but must connect them in an external way. Furthermore, this external way has to preserve the total individuality of each individual, namely, the individuality required by self-identity, i.e., by Leibniz's Law.

All these vague considerations gain body in the view that among the properties there is a dyadic relation, which I call consubstantiation or co-actuality. This is the only relation that connects different concrete individuals, and makes them both exist.

Let us represent consubstantiation with the symbol 'C*'. (The asterisk comes after the letter 'C' to indicate that we are dealing with an a posteriori or contingent relation. The fact that there is only one asterisk indicates that this is the fundamental, the number one, contingent relation; in a world deprived of thinking it would be the only one.) Thus, if 'a' denotes the morning star and 'b' the evening star, what is ordinarily meant by the sentence 'The morning star is the evening star,' or by the sentence, 'The morning star is the same as the evening star', can be more
Some Reflections on Existence

perspicuously put as the fact that

\[C^*(a,b). \]

To explain the nature of consubstantiation better let us analyze some ordinary statements. Consider

(11) The Principal is bald.

Most likely a person making a statement by means of sentence (11) would not intend to assert the statement of internal predication:

(11a) The Principal (baldness).

Most likely, such a person would be meaning to assert that the Principal exists and has baldness, not as an ontologically constitutive property, but as a contingent property. Thus his statement is more likely this:

(11b) There is an individual \(y \) such that: both \(C^*(y, \text{ the Principal}) \) and \(y \) (baldness).

Consider now a relational proposition:

(12) The Principal kissed the Art Teacher.

Once again, there are the internal, \textit{a priori} trivial propositions, which are palpably false:

(12a) The Principal (kissed-the-Art-Teacher-ness);

(12b) The Art Teacher (being-kissed-by-the-Principal-ness);

(12c) (12a) & (12c).

But more likely whoever uses sentence (12) to make a statement in practical life wants to convey some non-trivial information like this:

(12d) There is an individual guise \(y \) and there is an individual \(z \) such that: \(C^* (y, \text{ the Principal}) \& C^* (z, \text{ the Art Teacher}) \& y \) (kissing-the-Art-Teacher-ness) \& \(z \) (being-kissed-by-the-Principal-ness).

Consubstantiation is an equivalence relation within the actual. It conglomerates infinities of individuals. Thus, the old Platonic idea that actuality is community receives here one of its clearest expressions.

5.1. Existence

On the present ontological view, existence is analyzed as self-consubstanti-
tion. Thus we can introduce the linguistic abbreviation:

\[\text{Def. } x \text{ exists } \iff \text{def. } C^*(x, x). \]

We also have the law, or axiom:

\[C^*, 1. \quad C^*(x, y) \supset C^*(x, x). \]

5.2. Consubstantiation: Equivalence properties

Because consubstantiation is an equivalence property within the realm of existents, indeed, the most important equivalence property from the point of view of the contingency of the world, the word 'is' expresses it. Thus, besides \(C^*, 1 \), we have the laws:

\[C^*, 2. \quad C^*(x, y) \supset C^*(y, x) \]

\[C^*, 3. \quad (C^*(x, y) \& C^*(y, z)) \supset C^*(x, z) \]

5.3. Consubstantiation: Actuality properties

Consubstantiation is governed by the law of consistency, i.e., that only logically compatible sets of properties determine actualizable concrete individuals:

\[C^*, 4a. \quad C^*(x, x) \supset (x(F) \supset \sim x(\sim F)) \]

\[C^*, 4b. \quad C^*(x, x) \supset (x(\sim F) \supset \sim x (F)) \]

In order to simplify the statement of the next laws of consubstantiation, let us introduce a simple convention:

Convention. An expression of the form \(\bar{a} [\varphi] \) is an abbreviation of an expression having the operator ‘c’ prefixed to an expression of the union of the set of properties making up the individual denoted by the sign \(a \) and the unit set whose member is the property denoted by the symbol \(\varphi \). For example, if \(a \) is \(c \{ \text{Round, Square} \} \), \(\bar{a} \{ \text{Golden} \} \) is \(c^{c} \{ \text{Round, Square, Golden} \} \).

I shall refer to the individual denoted by an expression of the form \(\bar{a} [\varphi] \) as the \(\varphi \)-protraction of the individual denoted by \(a \).

The communizing character of actuality is spelled out by the following laws:

The Law of Contiguity:

\[C^*, 5. \quad C^*(x, y) \supset (y(F) \supset C^*(x, x[F])) \]

The Law of Completeness:
Some Reflections on Existence

C*6. $C^*(x,x) \supset (C^*(x,x[F])v C^*(x,x[\neg F]))$

The Law of Logical Closure:

C*7. $C^*(x,x) \supset (C^*(x,x[F_1]) & \ldots & C^*(x,x[F_n]) \supset C^*(x,x[G]))$

Provided that "$(F_1 & \ldots & F_n \supset G)$" is a theorem in standard quantificational logic.

The Law of Closure C*7. is, of course, only the most general and fundamental law of closure there is. Laws of nature are specific laws of closure. The pattern of the law is the same throughout. All we need to change is the condition that a certain formula be a theorem in some system of laws of nature, instead of being a theorem in quantificational logic.

5.4. Consubstantiation: Uniqueness

One of the errors of Meinong was to confuse the incomplete object "The Circle" with the property circularity. The latter is present in every existing circle, but the former is not. The entity "The Circle" is c \{Circle\}, i.e., the individual which alone is a circle. Hence if "The Circle" exists, there exists only one consubstantiation system in which circularity enters. Thus we have the law:

C*8. $C^*(x,x) \supset (\forall y) (C^*(y,y) & (\forall F) (x(F) \supset y(F))) \supset C^*(x,y))$

If x exists, then whatever existant has internally all the properties that x has internally is consubstantiated with x.

5.5 Consubstantiation: Compossibility

Some relations require that if a relatum exists so do the others. If the Principal kisses the Art Teacher, the Art Teacher exists and is in reality kissed by the Principal. On the other hand, if the Principal looks for the art teacher of his dreams, the latter need not exist. Thus, for some relations

$C^* (y_1 \ldots y_i (R_{y_1 \ldots y_i} y_{i+1} \ldots y_n))$, for every $i=1,\ldots,n$.

6. Objectification or Consociation

Concrete individuals are objects of thought, and as such, they are all on equal footing, whether they are impossible, merely possible, or actual. Of course, some individuals are seldom thought of, and some will probably never be thought of. Those that are thought of enter in an empirical relatedness to a mind. And this relation requires analysis. The first thing to note about the objectification of an individual is that, as Meinong remarked, to think of an individual (an object in his terminology) is to confer upon the individual some sort of existence, even if the object is non-existent, alas! even it it is impossible. Thus, objectification is like actuality, but it is not actuality. Hence, objectification must be analyzed as involving a special empirical, and therefore, external, dyadic relation between two concrete individuals,
as well, of course, as the fundamental internal predication. Let us represent this new empirical dyadic relation by the symbol 'C*', where the letter 'C' signals again the community of being, the double asterisk signals the secondary character of the community in question, and their postposition to 'C' signals the a posteriori nature of that community. Let us call this relation co-objectification or consociation.

Consider the sentence:

(13) Meinong used to think of the round square.

A partial ontological analysis of what (13) expresses is revealed by:

(13a) There is an individual x such that: x (being thought of by Meinong) & C** (x, c {being round and square}).

Naturally, (13a) does not analyze the way in which the individual Meinong enters into what (13) expresses. In the light of our discussion of actuality, presumably another part of (13) is:

(13b) There is an individual y such that: y (thinking of the round square) & C*(y, Meinong).

I submit that (13) is simply an abbreviation of

(13c) There are individuals x and y such that: x (being thought of by Meinong) & y (thinking of c {being round and square}) & C* (y, Meinong) & C** (y, c {being round and square}).

A fuller understanding of (13c), or (13), requires an understanding of the role of the proper name 'Meinong'. In section II.13 we say something about the roles of proper names.7

Using a mixture of ordinary language and the notation introduced above in section II.5.3, we can abbreviate (13c) as follows:

(13d) C* (Meinong, Meinong [thinking of the round square]) & C** (the round square, the round square [being thought of by Meinong]).

Consociation is like consubstantiation, not only in being a dyadic external, genuine relation, but also in being an equivalence relation within its field.

Thus, we have the laws:

C**.1. C**(x, y) ⊆ C**(x, x)
C**.2. C**(x, y) ⊆ C**(y, x)
C**.3. (C**(x, y) & C**(y, z)) ⊆ C**(x, z)

On the other hand, consociation is not consubstantiation. It lacks the features of consistency, closure, contiguity, and completeness.
Some Reflections on Existence

7. Conflation

Besides genuine identity or selfsameness, characterized in section II.4, there is another important a priori relation. It is like identity in that it deals with the internal constituents of an individual. But it has a somewhat external character, being a genuine mechanism of a pervasive and a priori community of being. I call it conflation, and represent it by the symbol "*C". It is, like identity, an unrestricted equivalence relation:

*C.1. *C(x,x)
*C.2. *C(x,y) ⊃ *C(y,x)
*C.3. (*C(x,y) & *C(y,z)) ⊃ *C(x,z)

The law of internality that governs conflation is this:

*C.4. *C(e₁,..., F,...G, y, e₂,..., F&G, ...)

Law *C.4. and *C.1. together justify the trivial claim that the man who murdered both Napoleon and Caesar is the same as the entity that alone has the following properties: first is a man; second, murdered Napoleon; and third, murdered Caesar.

The following law may be called the "self-identity property of conflation":

*C.5. *C(x,e₁{...}y)

which is *C(x,e₁[y=x]y), a notation with variables instead of operators.

Law *C.5. establishes the conflation of each individual with the individual constituted by the property of being identical with the former individual. Obviously, the two individuals are different, since they have different properties as constituents. Their community is, however, trivial and profound; that is, they conflate.

8. Existence again

The special case of law *C.6. involving the relation C* is worthy of special mention. It lies at the center of the perennial disputes about whether existence is a predicate (i.e., a property) or not. In the present ontological theory this issue receives a "yes and no" answer.

On one hand, existence is a property in that it is thought of through the property Form *C. It is a compound property in that it is the special monadic case of C* operated on by Reflexivity.

On the other hand, existence is not a property in that it is the contingency of the world underlying the property C*, but lying otherwise fathomless beyond the jurisdiction of the mind as the target of thought. Part of this fathomlessness of existence is captured by Law C*6., of the completeness of co-actuality. Yet again, existence must be somewhat docile and accessible to a mind that is not to stop chasing it filled with the despair of failure. This partial docility of existence is captured by the other laws of co-actuality, especially the laws of consistency and clos...
ure. (Are these laws imposed by the mind itself to a somewhat complacent under-lying reality?)

Existence is mysterious. It is rich and complex as shown by its laws; it is what in the end the whole of what thinking and acting is about. Yet it seems redundant and empty. As Kant put it, “the real contains no more than the merely possible.” More specifically, for any property Fness, the existing Fer is the same as the Fer. In the example that interested Meinong, the existing round square is the same as the round square. (I am not sure that Meinong clung fast enough to this sameness in his dispute with Russell.) This sameness, i.e., the fundamental redundancy of the property of existence, is partially captured by the special laws:

\[*C.6. \quad *C(x, \neg C^*(C(x, \ldots))) \]

\[*C.7. \quad *C(x, \neg \{being \ C^* \ with \ y\}) \].

9. The Meinong-Russell debate on existence again

It may not be amiss to make some comments on the Meinong-Russell dispute concerning the existing round square. It will be recalled that Meinong claimed both that the round square is round and that it is square. Russell argued that Meinong’s principle that the Fer is F yields contradictions. Russell’s first argument was that it is a contradiction to say that the round square is both round and square. His second argument was that, by that principle, the existing round square, which we know not to exist, is existing; thus, we have another contradiction. Meinong’s replies were as follows: (1) the law of contradiction applies only to the real, not to the merely possible or the impossible; (2) there is a difference between saying (a) the existing round square is existing, and (b) the existing round square exists.

On point (1) the present ontological theory sides with Russell on one issue: the law of contradiction must prevail throughout the realm of truth. But it concedes a point to Meinong: it recognizes impossible objects. On point (2) Russell contented himself with saying that he did not see any difference between (a) and (b). However, the present ontological theory can formulate the difference and score a point for Meinong.

The sentence

(14) The existing round square is existing
can naturally be taken to express a proposition about internal predication, so that it must be analyzed as:

(14a) The existing round square (being self-consubstantiated).

Of course, sentence (14) can be interpreted also as expressing a different proposition, namely, the one naturally expressable by sentence (15) below.

(15) The (existing) round square exists.

Most likely (15) expresses a proposition about actuality, so that it must be parsed as

(15a) C^*(the (existing) round square, the (existing) round square).

We can drop the parenthetical word ‘existing’ in moving from (15) to (15a) by virtue of Law *C.7. In any case, Meinong seems to be right in insisting on a distinc-
tion between two natural interpretations of (14) and (15). If our exegesis of his claim is correct, namely, that he meant (14) as (14a) and (15) as (15a), then he is right in holding that what (14) expresses is true while what (15) expresses is false.

Meinong did not proceed to explain his claim about the difference between (14) and (15) as the difference between (14a) and (15a). He went on to speak of a modal aspect in the thinking of the proposition expressed with (15). But this is an obscure doctrine.

10. **Ordinary material objects and counting**

On the ontological view being developed here, the concrete individuals our definite descriptions refer to are the same whether they exist or not. Our concrete individuals are material entities when they are actualized. Thus, the term 'the present Queen of England' refers to the individual constituted by the property present-Queen-of-England-ness, or the propositional function of being a present Queen of England. That term does not refer, at least not in its primary and basic meaning of use, to the individual the wife of the present Duke of Edinburgh. Nor does the term 'the present Queen of England' refer in its primary meaning or use, to the set of all those concrete individuals consubstantiated with the wife of the present Duke of Edinburgh. Of course, this set of individuals is consubstantiated with the set of individuals consubstantiated with the present Queen of England. But the term 'the present Queen of England' does not even refer, in its primary meaning or use, to this matter set.

Yes there are occasions on which an utterance of the term 'the present Queen of England' may perhaps refer to the set of concrete individuals consubstantiated with the present Queen of England. If it really exists, such use of the term is derivative and rests on its primary and basic use. Clearly, the use of the term 't' as short for an expression of the form 'm set of concrete individuals consubstantiated with t' can be understood only on the assumption that the use of 't' in the unabbreviated description is both understandable and different from its abbreviated use. At any rate, when we count "the (present) Queen of England, the King of Denmark, the Emperor of Japan, the Duchess of Tuscany, the Dictator of Nicaragua,...," we seem to be counting the sets of individuals that we believe to be consubstantiated with the individuals being listed.

It must be emphasized that the view we are expounding does not identify material objects with the sets of mutually consubstantiated individuals. Sets are always abstract individuals. Thus quantification over our concrete individuals is quantification over material objects, and quantification over sets of mutually consubstantiated concrete individuals is not quantification over material objects.

An ordinary concrete guise is at its core an aggregate of properties, or propositional functions. Indeed, we may say that an individual, material or otherwise, is a bundle of properties, including relational ones, to underscore the fact that it is not a mere aggregate or set of properties: the set has to be operated on by the concretizing operator c. Furthermore, an ordinary actual individual, material or not, is itself bundled up, i.e., consubstantiated, with an infinity of other individuals. Our account of individuals is, hence, a sort of bundle-bundle theory.
Thus, the present ontological theory sides with the bundle-of-universals theorists, but it parts company with those theorists who equate bundles with sets. Apparently our theory also differs from standard bundle theories in its account of bundlehood. Our theory also differs from the theory, put forward by Plato in the Phaedo⁶, that an ordinary object is a set of particulars that exemplify just one property. It also differs from the view often attributed to Stout, that an ordinary object is an agglomeration of particularized properties. (I often miss the distinction between a particularized property and a simple or perfect particular that exemplifies just one property.)

11. Leibnizian and quasi-Leibnizian individuals

From the laws of contiguity and consistency governing consubstantiation it follows that each individual, say the Fer, that exists determines a set of sequences of mutually consubstantiated individuals that culminate in one infinite individual, i.e., one individual that is constituted by a maximal consistent set of properties. Such infinite individuals I call Leibnizian concrete individuals. Naturally, they are beyond the apprehension of finite minds. To apprehend a Leibnizian individual one must be able to contemplate the set of properties in propría persona, with all its members in full view. As Leibniz noted, such individuals (which he called complete concepts, for reasons beyond our present compass) are fitting objects for a divine understanding.

Also as Leibniz noted, as each Leibnizian individual contains in its constituting set of properties all its relations to all other individuals, each Leibnizian individual contains in its inside the whole history of a possible world. Any two Leibnizian individuals mirror each other. A Leibnizian individual can belong to just one possible world.

Leibnizian individuals are wholly beyond our reach. Well, yes, they are beyond our direct reach. But they are indirectly accessible: they are pointable. Since sets of properties constitute the core of concrete individuals, there are quasi-Leibnizian individuals available to us. These are the individuals whose core is a property of the form having all the properties of a certain Leibnizian individual. Such quasi-Leibnizian individuals must perforce exist and be consubstantiated with actual Leibnizian individuals. For instance, consider the individual the present Queen of England. It is consubstantiated with the married present Queen of England, with the present Queen of England that is married and has a living husband and begat children who are living such that one of them is consubstantiated with (if you wish, is the same as) the Prince of Wales, and The sequence ends with a Leibnizian individual. I cannot present it here or anywhere else. But the quasi-Leibnizian c {being the Leibnizian culmination of the sequence of mutually consubstantiated individuals that begins with the present Queen of England} is consubstantiated with the Leibnizian individual at the end of that very sequence of individuals.

Quasi-Leibnizian individuals are rather cheap and obscure. But they are our only links with Leibnizian individuals. They provide us with guidance in our formidable task of lengthening our acquaintance with chains of mutually consubstantiated finite individuals.

We said above that when we engaged in so-called counting material objects
we seem to be counting sets of mutually consubstantiated individuals. Of course, we are. But we are also counting Leibnizian, as well as quasi-Leibnizian individuals. Thus when we count “the Queen of England, the King of Nairobi, the President of Venezuela, the Dictator of Portugal, ...” we may take each of these definite descriptions as being used in a special sense as abbreviations for descriptions referring to quasi-Leibnizian individuals. This is perfectly fine. What is crucial to keep in mind is that the abbreviational uses, again, must be derivative and presuppose the primary use of referring to an individual having just the property being mentioned.

Many Leibnizian individuals are material individuals. Thus, if we allow that there is an absolute space and time at which consubstantiated individuals consubstantiate, we might think that our ontology contradicts the principle of the impenetrability of matter. There is, of course, no such contradiction. This principle has to be analyzed in terms of individuals. What it says is that one region R of space cannot be occupied at a given time t by material individuals that are not mutually consubstantiated. But a Leibnizian individual, the finite individuals consubstantiated with it, and the quasi-Leibnizian individuals consubstantiated with them both, can, and must, occupy the same region of spacetime.

Existing concrete individuals belong into semi-lattices of consubstantiation, at the apex of which semi-lattices lie Leibnizian individuals.

Part III

Conclusion

I have discussed the Meinong-Russell debate, thus showing how the ontological system developed in Part II elucidates the existential data we encountered in Meinong’s discussions. We would examine the other data recorded in Part I and see how they are elucidated in the systems of Part II, which is built on the idea that properties are internal to objects and existence is an external relation among some of them. It is clear also how one can bring into existence precisely the objects one has planned to create. Whatever additional relations they have must be external to the objects resulting from their existing. But we shall not continue this necessary exercise. It is left for the reader’s enjoyment, since nothing can be more satisfying to the mind than seeing how the proto-philosophical data are elucidated by and fits with one another within a philosophical theory.

It is important that, as we noted at the very end of Part I, our philosophical theories be fruitful and not merely ad-hoc for some narrow data. And this is a most crucial test that the theory outlined in Part II must meet. However, there is no time here to go into a full examination of other philosophical problems that find a solution within the Abstractist theory of Part II. I will just mention that that theory provides the basis for a theory of proper names and descriptions, is a satisfactory theory for the problems of referential opacity and quantification into psychological contexts, and lends itself to a theory of knowing-who that distinguishes between knowing-who and quantifying into knowledge contexts. The theory of Part II with its contrast between consubstantiation and consociation provides the basis for the theory of the ontological foundations of literature. The contrast between identity, on one hand, and the other external relations, consubstantiation and consociation,
on the other, provides a solution to the many problems that have been encountered in the treatment of contingent identity and the special ones involved in so-called theoretical identity. 9

FOOTNOTES

2 I owe this observation to Kevin Donaghy, State University College at Brockport, New York.

3 On October 25, 1979 during the discussion of this paper at the Center for Philosophic Exchange.

5 For a further discussion of the ontology of fiction and the special problems of mixed fictional and real discourse, see "Fiction and Reality" above mentioned.
In "Thinking and the Structure of the World," I called internal predication Meinongian. This seems to be a historical error. Meinong distinguished two properties (predicates) of existence, rather than two predications of one and the self-same property or predicate. For a more comprehensive account of the different types of predication see the Appendix to "Philosophical Method and the Theory of Predication and Identity," NOUS 12 (1978): 189-210.

For Plato's view of individuals see my La teoría de Platón sobre las Formas, las relaciones y los particulares en el Fedón (Mexico: Universidad Nacional Autónoma de Mexico, Cuaderno 34, 1976), or "Leibniz and Plato's Phaedo Theory of Relations and Predication," forthcoming in a volume on Leibniz edited by M. Hooker to be published by the University of Minnesota Press.