Summer 2013

Contagion Lesson Plan

Nicole Scipione
The College at Brockport, nscip1@brockport.edu

George Fadden
The College at Brockport, gfadd1@brockport.edu

Follow this and additional works at: http://digitalcommons.brockport.edu/cmst_lessonplans

Part of the _Physical Sciences and Mathematics Commons_, and the _Science and Mathematics Education Commons_

Repository Citation
Scipione, Nicole and Fadden, George, "Contagion Lesson Plan" (2013). _Lesson Plans_. 338.
http://digitalcommons.brockport.edu/cmst_lessonplans/338

This Lesson Plan is brought to you for free and open access by the CMST Institute at Digital Commons @Brockport. It has been accepted for inclusion in Lesson Plans by an authorized administrator of Digital Commons @Brockport. For more information, please contact kmyers@brockport.edu.
Teacher(s): Nicole Scipione; George Fadden
Date: 7/26/13
Course: Biology/Algebra
Unit/Theme: Bacteria & Viruses/Rates
Time: approximately 45 minutes
CCSS Standard(s):

Science:
• S1.2a Independently formulate a hypothesis
• S2.1b Conduct an experiment designed by others
• S3.2c Evaluate the original hypothesis in light of the data
• S3.2f Make predictions based on experimental data
• S2.2e Choose appropriate sample size and number of trials
• S2.2 Use models to study processes that cannot be studied directly (e.g., when the real process is too slow, too fast, or too dangerous for direct observation)
• S5.2 Observe patterns of change in trends or cycles and make predictions on what might happen in the future

Mathematics:
• A.PS.3 Observe and explain patterns to formulate generalizations and conjectures
• A.PS.4 Use multiple representations to represent and explain problem situations (e.g., verbally, numerically, algebraically, graphically)
• A.RP.2 Use mathematical strategies to reach a conclusion and provide supportive arguments for a conjecture
• A.CM.4 Explain relationships among different representations of a problem
• A.CN.5 Understand how quantitative models connect to various physical models and representations
• A.CN.6 Recognize and apply mathematics to situations in the outside world
• A.CN.7 Recognize and apply mathematical ideas to problem situations that develop outside of mathematics
• A.R.1 Use physical objects, diagrams, charts, tables, graphs, symbols, equations, or objects created using technology as representations of mathematical concepts
Essential Question(s):
1. How do we properly apply the scientific method to a real-life problem?
2. Which is more contagious (which has a higher rate of infection), a viral disease or a bacterial disease?

Assessment: Ticket out the door: response to Essential Question #2 with reasoning.

Materials
- **Worksheet:** Applying the Scientific Method
- **Computers:** 1 computer for every 2 students
- **AgentSheets Model**

Work Time:
- There will be a set of directions at every computer and a list of pairings on the board.
- Upon entrance, each student will obtain a Worksheet and will split off into the assigned pairs (1 pair of students per computer).
- Following the given set of directions, students will complete the pre-assessment portion of their worksheets.
- When both students are finished with the pre-assessment portion of their worksheet, the pair will follow the directions to run the Contagion simulation.
- As stated in the directions, the students will create their own graphs/charts for the rates of infection.
- Students will then respond to the activity portion of their worksheets.
- Upon completion of the activity portion of the worksheet, students will thoughtfully respond to the post-activity portion of their worksheets.
- When students have completed the worksheets, they will complete the ticket out the door (see below).
- If a pair of students finishes ahead of the rest of the class, they will be instructed to explore vaccines and antibodies (to be introduced the next class period).

Closing:
- Each student will complete his/her own Worksheet (to be handed in at the beginning of the following class.)
- Ticket out the door: On a piece of lined paper, each student will respond to Essential Question #2 (Which is more contagious, a viral disease or a bacterial disease?) complete with the reasoning behind their response.