6-11-2015

Molecular Collisions

Kaitlin A. Ordiway
The College at Brockport, kordi1@u.brockport.edu

Miranda Wharram
The College at Brockport, mwhar1@u.brockport.edu

Steven Lauffer
The College at Brockport, slauf1@u.brockport.edu

Follow this and additional works at: http://digitalcommons.brockport.edu/cmst_lessonplans

Part of the Physical Sciences and Mathematics Commons, and the Science and Mathematics Education Commons

Repository Citation
http://digitalcommons.brockport.edu/cmst_lessonplans/350

This Lesson Plan is brought to you for free and open access by the CMST Institute at Digital Commons @Brockport. It has been accepted for inclusion in Lesson Plans by an authorized administrator of Digital Commons @Brockport. For more information, please contact kmyers@brockport.edu.
To understand inelastic and elastic collisions as well as temperature, concentration, surface area, and orientation as it pertains to collision theory.

LEARNING STANDARDS

CHEMISTRY

PERFORMANCE
INDICATOR 3.4
Use kinetic molecular theory (KMT) to explain rates of reactions and the relationships among temperature, pressure, and volume of a substance.

Major Understandings:
3.4c Kinetic molecular theory describes the relationships of pressure, volume, temperature, velocity, and frequency and force of collisions among gas molecules.
3.4d Collision theory states that a reaction is most likely to occur if reactant particles collide with the proper energy and orientation.
3.4f The rate of a chemical reaction depends on several factors: temperature, concentration, nature of the reactants, surface area, and the presence of a catalyst.

PHYSICS

4.1d Kinetic energy is the energy an object possesses by virtue of its motion.
5.1r Momentum is conserved in a closed system.

MATH

Definite integral of the rate of change of a quantity over an interval interpreted as the change of the quantity over the integral.

LEARNING TARGETS

Students will be able to:

- Manipulate the given model
- Explain how surface area, temperature, concentration, and orientation influence molecular collisions
- Explain how surface area, temperature, concentration, and orientation influence inelastic collisions
- Determine the distance traveled given the velocity of the particle

OPTIONAL INSTRUCTIONAL TOOLS

Netlogo Model

<table>
<thead>
<tr>
<th>CONCEPT</th>
<th>CONCEPT</th>
<th>CONCEPT</th>
<th>CONCEPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>Physics</td>
<td>Mathematics</td>
<td>Cross-Cutting</td>
</tr>
<tr>
<td>LESSON ESSENTIAL QUESTIONS</td>
<td>LESSON ESSENTIAL QUESTIONS</td>
<td>LESSON ESSENTIAL QUESTIONS</td>
<td>LESSON ESSENTIAL QUESTIONS</td>
</tr>
<tr>
<td>How does surface area, temperature,</td>
<td>How does surface area, temperature,</td>
<td>Given the velocity of the particles, how far</td>
<td>What factors influence the inelastic</td>
</tr>
<tr>
<td>concentration, and orientation influence molecular collisions?</td>
<td>concentration, and orientation influence inelastic collisions?</td>
<td>have the particles traveled?</td>
<td>collisions needed to form a new molecule?</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>VOCABULARY</td>
<td>VOCABULARY</td>
<td>VOCABULARY</td>
<td>VOCABULARY</td>
</tr>
<tr>
<td>Collision Theory, Kinetic Energy, mass, concentration, surface area, temperature, orientation, Boltzmann’s Constant</td>
<td>Inelastic collisions, Elastic collisions, Momentum, Kinetic Energy, mass and velocity</td>
<td>Integral, derivative, function, ratio, velocity</td>
<td>Patterns, factors, relationships</td>
</tr>
</tbody>
</table>

ADDITIONAL INFORMATION

[Enter your information here]