Physics Curriculum using Project Based Learning

Miranda Wharram-Santillo
mwhar1@u.brockport.edu

Follow this and additional works at: https://digitalcommons.brockport.edu/ehd_theses

Part of the Education Commons

To learn more about our programs visit: http://www.brockport.edu/ehd/

Repository Citation
https://digitalcommons.brockport.edu/ehd_theses/1208

This Thesis is brought to you for free and open access by the Education and Human Development at Digital Commons @Brockport. It has been accepted for inclusion in Education and Human Development Master's Theses by an authorized administrator of Digital Commons @Brockport. For more information, please contact ccowling@brockport.edu, digitalcommons@brockport.edu.
Physics Curriculum using Project Based Learning

By: Miranda Wharram-Santillo
Physics Curriculum using Project Based Learning

By: Miranda Wharram-Santillo
Table of Contents

Chapter One:
Introduction ... 4

Chapter Two: *Review of Literature* ... 6

Chapter Three: *Narrative* .. 22

Project One ... 24

Project Two ... 38

Project Three ... 52

Project Four ... 60

Project Five ... 71

Reflective Discussion .. 83

References ... 86

List of Project Based Learning (PBL) Project Outlines

Project 1 Outline: .. 25

Project 2 Outline: .. 39

Project 3 Outline: .. 53

Project 4 Outline: .. 61

Project 5 Outline: .. 72

List of Project Based Learning (PBL) Rubrics

Project 1 Rubric: .. 28

Project 2 Rubric: .. 42

Project 3 Rubric: .. 55

Project 4 Rubric: .. 63

Project 5 Rubric: .. 74
List of Project Based Learning (PBL) Sample Lessons

<table>
<thead>
<tr>
<th>Project</th>
<th>Sample Lessons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>57</td>
</tr>
<tr>
<td>4</td>
<td>65</td>
</tr>
<tr>
<td>5</td>
<td>76</td>
</tr>
</tbody>
</table>

List of Project Based Learning (PBL) Assessments

<table>
<thead>
<tr>
<th>Project</th>
<th>Assessments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>81</td>
</tr>
</tbody>
</table>

List of Project Based Learning (PBL) Calendars

<table>
<thead>
<tr>
<th>Project</th>
<th>Calendar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>75</td>
</tr>
</tbody>
</table>
Chapter One: Introduction

Problem based learning (PBL) in the classroom has been used for some time. It started out in the medical field and has made its way into the educational field due to the tremendous gains made by the students. PBL has a positive effect on knowledge retention due to the fact that PBL requires students to learn in a constructivist manner instead of just recalling facts (Kin Hang Wong & Day, 2009).

PBL allows for students to be at the center of the lesson. Studies have shown that PBL is more effective than conventional teaching approaches because it allows the students to develop greater motivation, interest in subjects, learning satisfaction, confidence in learning, knowledge acquisition, using their resources, and self-directed work. PBL is especially useful because it allows the students to solve meaningful and authentic problems through inquiry or discovery (Kin Hang Wong & Day, 2009). This knowledge retention is measured in two ways in PBL; there is the traditional form of formative and informative assessments and with the project component, a rubric as well. The students are expected to collaborate together to earn a shared grade on the outcome of their project. The students and teacher work together to ensure that everyone understands the rubric and find it fair. This rubric is then used as a reflection tool throughout the problem both on individual components and team components (McDonald, 2008). Throughout the project, students are provided feedback both from their peers and from the teacher. This feedback opportunity allows for students to learn and improve their project outcome. The use of PBL and the reflection techniques not only allow for the students to walk away from the class better understanding the concepts, but they also develop necessary career skills such as collaboration and using their resources.
In order to arrive at this satisfaction, there is some adjustment needed at the beginning of the course. The students in most cases are used to being spoon fed information, therefore it takes some time to adjust to being in the driver's seat to their learning. When implemented in the classroom students would do the bare minimum. Many students would skip brainstorming and elaborating of their ideas and try to complete the task fast and on the first try (Hung, 2011). Once the students are provided supports and become used to guiding their learning they will be able to flourish.

PBL and the use of inquiry labs can be integrated into a new structured physics class. This new structure allows for students to learn through questioning personal experiences and scenarios. The students will become successful both in the lab setting and on their assessments. He found that the students had a better grasp of basic physics concepts and a better understanding of the process of science. The students showed significant improvements in real world connection, problem solving general, and problem solving confidence (Madsen, 2011). The reconfiguration of the physics curriculum will allow for students to learn physics as it applies to their daily lives therefore making it more applicable.

My final project will consist of a series of projects making up a project based learning physics curriculum. Each project will consist of a scenario or experience the students have or could encounter at some point in their life. These scenarios and experiences will shape the flow of the curriculum as well as form the essential question to be answered at the end of each project. This curriculum will cover the same standards required of a traditional high school physics, just in a different way. Similar to curriculum created by Martinás and Tremmel, the students will learn concepts that apply to each of the scenarios (2014). Concepts can reoccur thus allowing for
more connections to be made to the concepts. It is important when creating the different projects, that over the span of the curriculum, each standard is addressed at least once in the projects. The structure of a problem is crucial to student understanding. When a problem is well-structured students have strategies to tackle the problem and be successful in project based learning (Svihla & Reeve, 2016). Drafting the project or problem is going to be a crucial first step in order to ensure a flow in the curriculum and that the students and teacher alike, understand what is expected of them.

Once the curriculum is created, it can be used as a guide or reference for educators in physics to allow for a student centered classroom in which everything applies back to the students’ lives. By breaking down the projects, it will allow for educators to have a path to follow in their own classroom.

Chapter Two: Review of Literature

Introduction

Problem based learning (PBL) in the classroom has been used for sometime. It started out in the medical field and has made its way into the educational field due to the tremendous gains made by the students. PBL has a positive effect on knowledge retention due to the fact that PBL requires students to learn in a constructivist manner instead of just recalling facts (Kin Hang Wong & Day, 2009). This knowledge retention is measured in two ways in PBL; there is the traditional form of formative and informative assessments and with the project component, a rubric as well. The students are expected to collaborate together to earn a shared grade on the outcome of their project. Throughout the project, students are provided feedback both from their peers and from the teacher. This feedback opportunity allows for students to learn and improve
their project outcome. The students and teacher work together from there to add more detail to
ensure that everyone understands the rubric and find it fair. This rubric is then used as a
reflection tool throughout the problem both on individual components and team components
(McDonald, 2008). Individual components can be inquiry labs that address a prompt similar to
the problem they are trying to solve in the project or it could be a formative assessment. Inquiry
labs follow a similar premise as PBL in that it provides a guiding question and has the students
fill in the blanks. With the students doing the research, they are in charge of understanding the
concepts and being able to measure them to justify their thinking. PBL and the use of inquiry
labs can be integrated into a new structured physics class. This new structure allows for students
to learn through questioning personal experiences and scenarios. In applying the concepts to the
students lives, it will provide an interest on the students part which allows for better retention.

Contemporary Trends in Science Education: Classroom Environment

In the 21st century, the purpose of education is to create students that build knowledge
based on previous knowledge, students who know when to use certain knowledge, and students
that are capable of solving problems with both previous and new knowledge. It allows for the
students to reflect on their learning and apply it to their daily lives. This approach creates an
environment in which students take ownership for their learning. Teachers in this classroom
environment would motivate their students and encourage them to stay focused, therefore taking
on a role of a facilitator (Nayman, Berber, Anagun, & Yildiz, 2015). To have the opportunity to
build knowledge, it is commonly believed that the teacher would need to utilize inquiry. Inquiry
allows for the students to work together to discover concepts and relationships and then
communicate it to their peers. Through this process, students are taking ownership of their
learning and challenging their thinking (Dickson, Kadby, & McMinn, 2016). In order to take
ownership of their learning and to build on their knowledge students would need to use strategies
provided by the teacher. From the survey it concludes that the strategies a teacher utilizes
impacts the learning environment in the classroom. The students stated that learning through
project based learning allowed for a more enjoyable class, the teacher is supportive, and the
students were more satisfied with class as a whole. The study also found that the teacher-student
relationships were significantly better for the students learning through project based learning.
They felt that the teacher was more helpful and sincerely cared about the students. These
students found the environment to be less tense and the tasks were less difficult. This can be
explained through students being more actively involved in their learning and therefore have
more control of their learning (Hugert, 2016). Having a positive classroom environment is
important in order for students to be willing to take risks. When a teacher has the right strategies
in place and utilizes inquiry through problem based learning, it allows for the students to build
on their knowledge base.

Gender in the Classroom

When one hears physics, they usually have one of two responses, oh that is interesting or
physics is difficult. Physics and science in general, has created a culture that has discrete
characteristics. Many think of scientists as white men in lab coats finding new discoveries. Being
a female in a science field is considered an outlier or contradictory. This idea is shared in the
community and therefore is being broadcasted to students. In having female students seen as
outliers in science, they are being filtered out of science classes due to feeling a lack of
belonging in a community (Corbett, 2016). Women continue to be underrepresented in STEM
fields and girls as early as seventh grade have a fixed mindset about science. With this fixed mindset, it is difficult to get girls interested in science let alone a career in it (Kerr, 2016). Women in the USA and in Chile are in the minority of science classes. Around 20% of females initially register in a science field as an undergraduate in the United States. Through comparisons of applications in 2010 to a Chilean University, the gender gap can be verified (Gándara & Silva, 2016). The gender gap in science can be seen as early as seventh grade and continues into careers. Due to the the lack of belonging in the science community and the fixed mindsets many people share, women continue to be underrepresented in science classes and fields.

Crosscutting Concepts

Crosscutting concepts can be used as both lenses and tools to help students gain understanding in the classroom. The use of crosscutting concepts allow for students to gain a deeper understanding of one disciplinary core idea while making connections across other disciplinary core ideas. These connections can be made through the same science discipline or other scenarios. When planning the use of crosscutting concepts through a lens it allows teachers to analyze core ideas by looking at the concept through a different perspective. The use of crosscutting concepts as a tool allows for the teacher to consider how to develop deeper learning and understanding of core ideas or concepts. Connections can also be a great avenue for the use of crosscutting concepts as a teacher because it allows for the teacher to facilitate connections across different science disciplines and different core concepts. This integration of crosscutting concepts into the planning will allow for teachers to maximize learning through the use of the Next Generation Science Standards (Fick, Arias, & Baek, 2017). These standards outline a progression of learning on a larger scale from elementary to secondary; therefore leaving
teachers to decipher and incorporate them into their lessons. This study created a rubric in the hopes of helping teachers plan how to make the connections between learning outcomes and crosscutting concepts. Through this assessment formation, the use of Bloom’s Taxonomy, and the rubric, teachers should be able to plan to have students understanding concepts deeper and making connections between different sciences (Mohl, Fifield, Lafond, Michman, Saxton, & Smith, 2017). Another form of incorporation and assessment of crosscutting concepts are crosscutter cards. Cross Cutter Cards are a formative assessment to be used in the lesson to ensure the teacher is emphasizing the crosscutting concepts as well as the students using and applying them (German, 2017). Through students making connects to other concepts and scenarios, it allows for deeper understanding. The new standards require teachers to incorporate them into their classroom and therefore would need to implement and assess them. The use of a rubric or crosscutter cards, allows for a teacher to plan and assess purposefully.

Problem Solving in the High School Science Classroom

Physicists have noted that many students do not learn enough conceptual physics from the conventional way of teaching. Many students leave with the same or more misconceptions which adds on to the difficult of mathematically solving problems in physics. Both in the college and high school setting, many students are asked to “plug and chug” their way through the problem without understanding the concepts behind the variables or equations (Gok, 2015). Engagement and interest in science tends to dwindle as students get older. Other studies have claimed that technology contests that have high-pressure or are competitive can draw students back into being interested in science. These science and technology contests are based around problems that have multiple solutions. The idea behind each of these events is problem solving.
Before students can first engage in problem solving, they must determine and accept a problem. Through accepting the problem, this begins to shape the students attitude towards problem solving (Huang, Chiu, & Hong, 2016). In order to find a solution, the students need to ask questions, in the case of these Iowa students they first formulated questions they personally felt connected to in the local news. Once these questions were made, the students applied content they had learned and inquiry techniques, to answer questions they made from the news. Through this form of questioning, it provided motivating opportunities for students to interact with their peers, teachers, and community members as they search for information, consider alternative solutions, and apply these experiences to deal with a variety of real world issues (Akçay, n.d.). The use of problem solving skills can draw students interest back as well as allow for students to better understand the concepts. In better understanding concepts, the students will be able to understand the concepts behind equations instead of plugging in numbers to an equation.

Technology in the Classroom

Technology is an encouraged medium to be used in the classroom due to students savviness and interest. This study looks at the integration of technology with problem based learning to determine the outcome of the two being intertwined. When analyzing the qualitative data it was found that having a blend of face to face interactions with online work was liked and beneficial to the students. The groups found that having the mix of online discussions and face to face interactions cleared up misunderstandings and allowed for the group to in a sense make up and move on. At the end of the study, all groups were able to successfully produce a collective product. Individually the students did well when using an electronic journal for the conceptual pieces as well (Donnelly, 2010). On the questionnaire, all participants enjoyed the integration of
the technology through their high ranking remarks on positively framed questions and their low remarks on frustration related questions. Thus suggesting the experience was well perceived with levels of communication, interactions, reflection, learning, and satisfaction ranking high. When analyzing the form of communication and reflection, the findings were the students used the technology frequently as a way of communicating research done in and out of class as well as posing questions leading to the solution to the problem (Ioannou, Vasilou, & Zaphiris, 2016). None of the students expressed a negative opinion on the online integration into the classroom. The professor also noted in observation, students did not use the online platform as a way to communicate in their group, instead they utilized face to face interactions (Tambouris, Panopoulou, Tarabanis, Ryberg, Buus, Peristeras, Lee, & Porwol, 2012). The integration of technology into the classroom provides a way to communicate in a group both in and out of the classroom. By allowing students to use technology as a resource of research, it allows the students to explore concepts and determine their own understandings.

Problem Based Learning: What Problem Based Learning is

Problem based learning first emerged in the 1960s in the medical field in an attempt to engage students in real problems doctors encounter. This idea has been translated into education, by having teachers give students a real life problem for students to solve. The idea is the problem will provide a context for learning and interest the students. The students in small groups will work together to contemplate the problem, determine what they need to learn in order to achieve or create a solution, and then work towards this goal (Pease & Kuhn, 2011). Studies have shown that PBL is more effective than conventional teaching approaches because it allows the students to develop greater motivation, interest in subjects, learning satisfaction, confidence in learning,
knowledge acquisition, using their resources, and self-directed work. PBL is especially useful because it allows the students to solve meaningful and authentic problems through inquiry or discovery (Kin Hang Wong & Day, 2009). There is evidence to support the effectiveness of PBL in helping students learn higher-order thinking skills as well as discipline-based content (Ertmer, Schlosser, Clase, Adedokun, 2014). The use of PBL in the classroom not only allows for students to develop critical thinking skills in order to learn content but life skills such as communication skills, in order to become better professionals as well.

Challenges with Problem Based Learning

Problem based learning and its outcomes for students has been praised for its theoretical soundness however the results in the classroom have been mixed. The theoretical outcomes have been supported in studies such as connecting new concepts to previous concepts, collaboration, and social interactions. Most of these studies talk about the theories and then jump to the results at the end with little if any direction on implementation. Project based learning has the students use problem solving skills in order to connect prior knowledge and current knowledge to a project or problem; thus leading to some development of self-directed learning skills (Hung, 2011). Small groups were deemed effective for students’ learning especially in the areas of content integration, critical thinking, communication skills, self-directed learning, and the connection between concepts and a clinical problem. Challenges to PBL are the tutor’s effectiveness, offering identical challenging and relevant cases to each group, and the shared learning environment (Long & Qin, 2014). Due to being spoon fed until arriving at this school, the students were weak in thinking skills. The students were not resourceful in looking for information or how to ask for help. To overcome this challenge, the teacher would provide the
students with tools to help them work through the thinking process, for example mind mapping (Mansor, Abdullah, Wahab, Rasul, Nor, & Raof, 2015). In using PBL in the classroom, the teacher would need to understand what PBL is and how to implement it. At first, studies found that there will be push back by the students because they want to do the bare minimum. However, if the teacher builds in necessary supports and authentic projects, the students will learn the critical thinking skills and collaboration skills.

Student Ownership

Problem or project based learning requires students to take an active role in their learning. This requires the students to be responsible and participate in the process of learning and making meaning. This process is difficult for many students at first because this role conflicts with habits they have developed over the years where they are passive recipients of knowledge. To become these active learners, students must develop self-regulated learning skills. These skills refer to how metacognitively, motivationally, and behaviorally active the student is in their own learning process. When students possess these skills, it leads to students successfully becoming active learners and thus learning the concepts in order to solve the problem or project. Newly prepared PBL teachers found the greatest struggles with PBL are the students lack of motivation, lack of ability to take responsibility for learning, poor behavior, and negative attitudes. When self-regulated learning skills become a focus in addition to the project or problem, it allows for the teacher to provide necessary supports for the students to develop these skills as well as learn the content (English & Kitsantas, 2013). Self-regulated learning is a large component of problem and project based learning. In this study, they looked at the quantitative data of student self-reports of self-regulated learning and experience of autonomy support in a
problem or project based learning environment. Based on the results, it can be implied that the project based learning courses have more effect on student self-regulated learning than problem based learning. The data also suggests that the students in the project based learning course had a greater sense of autonomy support due to the authenticity of the problems provided (Stefanou, et al., 2013). In project based learning, students need to actively frame and reframe the problems in order to learn the concepts to arrive at a solution. This added freedom and choice allowed for the students to take ownership of the problem and thus they gathered information, generated ideas, and evaluated those ideas in a purposeful manner (Svihla & Reeve, 2016). Being aware of the student ownership that is necessary in PBL allows for the teacher to address the challenge head on. Incorporating supports to allow for students to learn the self-regulated learning skills allows for them to learn how to learn in a PBL environment and in general. Once the students have these skills, the challenge will be addressed and students will be able to reap all of the benefits of PBL.

Implementing Problem Based Learning: Assessment in Problem Based Learning

Problem based learning allows for students to review their work, reflect on their work, provide feedback to peers through peer assessment, and provide feedback to themselves through self assessment. Assessment in problem based learning is different that traditional forms of testing and evaluation because it not based on fact memorization but rather knowledge application and knowledge transfer. By offering opportunities throughout a project for assessment, it thus allows for students to reflect on their learning and continue to improve (McDonald, 2008). In PBL, rubrics are used as an assessment tool for the project the students have been working on. This rubric can encompass concepts as well as other pieces needed to
complete their final product. The rubrics used should remain bias free and the teacher should fully understand the rubric (Bahri. Azli, Samah, 2012). The fairness of assessment is another piece that takes adjustment on the students part. Much of the time, students are only recorded for their work; with problem based learning, students are held individually responsible for their learning but they are also assessed in the group setting. Students fear that the their grade will be negatively impacted by weaker students in the group. However, this is an opportunity for the students to collaborate together to reach a common goal with the rubric the students have prior to starting the project. In a large study, it was found that high-achieving students placed in groups that rewarded both individual and group achievement resulted better for the students by scoring higher on a unit test as well as taking on the leadership role within their group (Kumar & Refaei, 2013). The creation and use of a rubric in PBL is essential to the project. All involved in the project, teacher and students alike, should be able to fully understand the rubric and how it will be assessed. In PBL, there are built in stages of reflection. The students submit pieces of their project to both peers and the teacher for feedback to then be applied back into the project. This added reflection in addition to traditional forms of assessment allow for students to showcase their knowledge.

Labs and Problem Based Learning

In the traditional physics classroom, labs are closed-ended. The procedure and results are known beforehand and the students have to put little if any thought into the process of completing a lab. Open-ended labs allow for students to conduct inquiry in order to draw their own conclusions. For the first and remaining labs, the teachers only provided the students with the problem and the rest was up to the students. They were to collect appropriate data, write up
their results, and analyze and interpret the results. As a result of only providing the problem, students would use each other as resources to work through and understand the lab, having small group and sometimes large group discussions. The students determined what was needed or appropriate for the lab write ups based on the procedure they conducted and used evidence to support their choices. The teachers also found that by altering the labs, the students made insightful analyses and did not blame error on simple thoughts. They reflected on their experimental methods and explained what some sources of error could be as well as why they would be a source of error. Aside from the better conceptual understanding, students also enjoyed open-ended labs more due to the investigative process and the students were far more engaged. As a result, the quality of lab write ups was far superior to previous methods. The students demonstrated science process abilities that allowed them to construct models, design experiments, solve open ended problems, and collaboratively work with their peers. (Szott, 2014). This study looked at an environmental chemistry lab and took a cookbook lab (one that provides step by step procedures for the students to follow) and turned it into what could be a real life scenario. To begin the project, the students were told that an investor wanted to purchase some property in order to turn it into a community sports complex. There is a pond in the back corner of the property that is desired to turn into a swimming space. The students were required to submit an official report that includes findings and recommendations for the company. Ninety percent of the students were able to create procedures or flow charts that were viable for separating out cations (Hicks & Bevsek, 2011). A professor at Wabash College wanted to create a new twist on a physics class for non science students. The class would be lab-centered and would provide the students hands-on practice doing science. He created a course that would
focus on the process of science by following a framework similar to that of MythBusters. In this class, the students would solve various myths in a two stage process. In each of the processes, the students would follow the experimental method followed by MythBusters. The process begins with research, the students would research the myth and determine the concepts behind the myth. Next would be design, build, and execute. In this stage, the students would be designing their own experiments to test out the concepts and the myth. Analyze is the following step. In this step, the students would analyze their results to form a conclusion. After forming a conclusion, the students would then communicate their findings using the concepts they learned, the lab they created, and the results they found (Madsen, 2011). Continuing the PBL mindset of student centered lessons, labs have been proven to provide similar results. By only posing the problem or essential question at the beginning of the lab, the students need to think about what they know and determine how to address that problem. The students will be doing the same process for an overall project therefore the students will be seeing the learning gains both in the project and in the lab.

Physics Curriculums

Traditional curriculums of physics courses follow the Newtonian approach. When students arrive in the classroom, they have preconceived ideas about how the world works around them and generally do not change their thinking or understanding through the completion of the class. Newtonian physics is based on the findings of Isaac Newton. In this traditional form of curriculum, the students would first learn about mechanics and later on learn about modern physics. When learning about these two large components, there are two different paradigms that must be understood. The shifting of the paradigms, the study suggests, leads to students
disinterest as well as misunderstanding. These misunderstandings stem from learning more about
the equations associated with the concepts and scratching the surface with the concepts. But
focusing more on the students daily interactions and applying the physics concepts to these
scenarios, the students do not have to shift their thinking but rather apply concepts to experiences
they have seen (Martináš & Tremmel, 2014). With the new Next Generation Science Standards
(NGSS) being implemented, science classes are encouraged to incorporate these standards in
order to promote science literacy. In order to be an exemplary teacher, they would need to
include all components of the science standards; them being: content standards, science and
engineering practices, connections to the nature of science, and cross-cutting concepts
(Concannon & Brown, 2017). The department went from a traditional lecture based curriculum
to an activity based curriculum where the students would be learning the concepts through hands
on learning experiences. The classes still covered the same amount of concepts per each semester
with the new method as well as remained around the same amount of teaching time. These hands
on activities could range from completing an inquiry activity to interactive lecture
demonstrations. No matter the activity, the students were required to complete a forced response.
This response required the students to make an initial response to demonstrate what they know
prior as well as identify any misconceptions. Throughout the activity as well as at the end, the
students would reflect on their learning (Yoder & Cook, 2014). Restructuring the traditional
physics curriculum to one that applies to scenarios or experiences the students experience daily
will allow for the students to become more invested. The students will be more invested because
they are able to see how concepts relate to their life and the restructuring allows for the students
to not have to restructure how they think. By allowing the students to wonder about experiences
they have had and applying the concepts to these experiences, it will allow more a more meaningful connection and the students will not have the paradigm shift limiting them. The projects in the proposed curriculum would be experiences or scenarios the students have experienced or can experience. Within this curriculum shift, the science standards required will need to be incorporated. PBL lends itself to these standards because the students are already connecting different concepts, covering content standards, and designing a solution.

Conclusion

Problem based learning allows for students to be at the center of the lesson. Studies have shown that PBL is more effective than conventional teaching approaches because it allows the students to develop greater motivation, interest in subjects, learning satisfaction, confidence in learning, knowledge acquisition, using their resources, and self-directed work. PBL is especially useful because it allows the students to solve meaningful and authentic problems through inquiry or discovery (Kin Hang Wong & Day, 2009). The use of PBL and the reflection techniques not only allow for the students to walk away from the class better understanding the concepts, but they also develop necessary career skills such as collaboration and using their resources. In order to arrive at this satisfaction, there is some adjustment needed at the beginning of the course. The students in most cases are used to being spoon fed information therefore it takes some time to adjust to being in the driver's seat to their learning. When implemented in the classroom students would do the bare minimum. Many students would skip brainstorming and elaborating of their ideas and try to complete the task fast and on the first try (Hung, 2011). Once the students are provided supports and become used to guiding their learning they will be able to flourish. The students will become successful both in the lab setting and on their assessments. He found that
the students had a better grasp of basic physics concepts and a better understanding of the process of science. The students showed significant improvements in real world connection, problem solving general, and problem solving confidence (Madsen, 2011). The reconfiguration of the physics curriculum will allow for students to learn physics as it applies to their daily lives therefore making it more applicable.

Project Outline

My final project will consist of a series of projects making up a project based learning physics curriculum. Each project will consist of a scenario or experience the students have or could encounter at some point in their life. These scenarios and experiences will shape the flow of the curriculum as well as form the essential question to be answered at the end of each project. This curriculum will cover the same standards required of a traditional high school physics, just in a different way. Similar to curriculum created by Martinás and Tremmel, the students will learn concepts that apply to each of the scenarios (2014). Concepts can reoccur thus allowing for more connections to be made to the concepts. It is important when creating the different projects, that over the span of the curriculum, each standard is addressed at least once in the projects. The structure of a problem is crucial to student understanding. When a problem is well-structured students have strategies to tackle the problem and be successful in project based learning (Svihla & Reeve, 2016). Drafting the project or problem is going to be a crucial first step in order to ensure a flow in the curriculum and that the students and teacher alike understand what is expected of them.

Once the curriculum is created, it can be used as a guide or reference for educators in physics to allow for a student centered classroom in which everything applies back to the
students lives. By breaking down the projects, it will allow for educators to have a path to follow in their own classroom.

Chapter Three: Narrative

High school physics classrooms tend to follow a typical curriculum. They start with mechanics and then work their way to electricity and modern physics. This style of curriculum allows for students to learn all necessary standards, however it leads to students believing that concepts taught at the beginning of the year do not connect to concepts learned at the end of the year. Gok supports the change in curriculum due to many students leaving the class with the same or more misconceptions when physics is taught in the traditional sense (2015). The proposed curriculum is taught in project based learning form. This will encompass five projects that cover all of the necessary standards, however they do not follow the traditional curriculum. In this curriculum, students will learn concepts that pertain to a certain experience or scenario. These experiences or scenarios will be made into five projects in which the students will learn concepts in order to apply them to the experience or scenario. As supported by Kin Hang Wong and Day, PBL is more effective than conventional teaching approaches because the students develop greater motivation, interest in the project or concepts, using their resources, and self-directed work. PBL is especially useful because it allows the students to solve meaningful and authentic problems through inquiry or discovery (2009). The students may see the same concept in every project, while they also may see one concept in just one project. Through recurring concepts it allows for students to see how concepts relate to each other and that they are not separated. With the recurring concepts, it will also allow for the students to continuously reflect on their learning and to see how physics relates to their lives. The change in curriculum
and continuous observations of concepts is supported by Martinás and Tremmel because it allows the curriculum to focus more on the students daily interactions and applying the physics concepts to scenarios or projects (2014). By having projects, it allows for authentic learning because each project applies to the students lives in some shape or form. The final curriculum lays out five projects to be covered over the course of one year that addresses all of the physics standards required by New York State.

Providing an authentic learning environment for students in which they can apply the projects to their lives allows for students investment. Project based learning allows for the learning to be placed in the students hands as well as allows for them to develop essential skills such as communication skills and problem solving skills. Student ownership of their learning is amplified through PBL as supported by Hugert as students were observed to be more actively involved in their learning and therefore have more control of their learning in the PBL setting (2016). With these skills and the project set up, it allows for the students to critically think about the concepts and to apply them to their daily lives. By incorporating all concepts applicable to a particular scenario or project, instead of following the traditional physics curriculum, it allows for students to continuously see concepts in order to retain the concepts and meet higher order Bloom’s by applying the concepts and scenarios to their lives.

The five projects included are a public service announcement on the dangers of texting and driving, a poster and presentation meant to educate all on bow and arrow hunting, a designed and created escape room, a debate on the impact of technology, and a musical product that impacts one’s mood. Each of these projects will cover the necessary New York State Standards and will flow from one project to the next. There are various resources included for each of the
projects in order to allow for a teacher to roll out the student centered curriculum. For each project there is a driving or essential question that all content and project work connects back to. From there, there is a project summary that provides the teacher with a brief overview of the project as well as an entry event to kick off the project and draw the students interest. Once the project is kicked off, the students are provided a calendar and rubric that allows for them to see exactly what is expected of them. This also allows the teacher to have an assessment tool for the project at the conclusion of the project. The calendar provides an outline for the teacher and student to follow including due dates and when content will be learned. The due dates include dates for when labs are due, quizzes that are coming as well as the formative assessment at the end of the project. To work in hand with the already mentioned resources, there are also sample lesson plans that allow for a teacher to mimic a typical day. According to the calendar there are three different typical days: content day, project day, and lab day. For each of those days there is a sample lesson plan as well as resources necessary to complete that lesson. The assessments for each project are also included to provide feedback to the students as well as the teacher as to the progress of learning.

Project One

Project one kicks off the school year as the first project based learning project. This project encompases the traditional kinematics with momentum, impulse, kinetic energy, and Conservation of Momentum included. This project is based on texting and driving as the students are beginning to learn to drive or are already. Within this project students will create their own PSA to communicate the dangers of texting and driving with added concepts to support their arguments.
The resources for project one are for both the teacher/instructor and student alike. There is a project outline that outlines all of the standards to be addressed in the project, the entry event, a brief description of the project, student objectives, and resources necessary. To support the outline, there is a rubric that provides the students a clear idea of what to include in their PSA as well as provides the teacher with an assessment tool for the project. The calendar also provides the teacher and students with a sense of progress through the project. Students know when to complete graded assignments as well as provides dates for assessments. The sample lessons and supporting documents allow for the teacher to gain an idea of what a typical content day, lab day, and project day would look like in this curriculum. The assessments also provide the teacher a resource to assess individual progress.

<table>
<thead>
<tr>
<th>Curriculum Design Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Project:</td>
</tr>
<tr>
<td>Subject/Course:</td>
</tr>
<tr>
<td>Teacher(s):</td>
</tr>
<tr>
<td>Grade Level:</td>
</tr>
<tr>
<td>Duration:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Snapshot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driving Question:</td>
</tr>
</tbody>
</table>

Stained Inquiry - Standards:
- HS-PS2-2: Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.
- HS-PS2-3: Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.
 - 3-PS2-2: Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion.
 - 4-PS2-1: Use evidence to construct an explanation relating the speed of an object to the energy of that object.
 - 4-PS2-3: Ask questions and predict outcomes about the changes in energy that occur when objects collide.
 - MS-PS2-1: Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and the speed of an object.
 - MS-PS2-1: Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.
 - MS-PS2-1: Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and the speed of an object.

Authenticity - The students are in cars daily.
Voice and Choice - The students can design and create their PSA.
Critique and Revision - Students will submit outlines and rough videos to receive feedback from peers and staff.
Public Product - Video to educate people on the dangers of texting and driving.

Entry Event: Play this video (https://www.youtube.com/watch?v=El4kDivDJU). After playing the video, introduce the project with the overall goal (Create a PSA that educates the people on the dangers of texting and driving.) Following the video and goal, students will create a know/ need to know list in pairs.
Stage 1 – Desired Results

Established Goals:
- I can create a storyboard that educates an audience on the dangers of texting and driving.
- I can recreate the planned storyboard in order to film our PSA.
- I can edit/revise my work provided feedback in order to improve.
- I can edit my video in order to have a smooth and comprehensible PSA.

Acquisition

Students will know:
- The following concepts: distance, displacement, time, velocity, speed, initial velocity, final velocity, acceleration, motion graphs, mass, kinetic energy, momentum, impulse, Conservation of Momentum, inelastic collisions, and elastic collisions.
- The difference between distance and displacement.
- The difference between speed and velocity.
- How to calculate velocity.
- How to measure distance, time, and mass.
- How to calculate acceleration.
- How to interpret motion graphs.
- Describe the motion associated with the motion graph.
- How to calculate/uses the Big 3 kinematic equations.
- How to calculate kinetic energy.
- How to calculate momentum.
- How to calculate impulse.
- How to calculate Conservation of Momentum.
- The difference between elastic and inelastic collisions.
- How to calculate elastic collisions.
- How to calculate inelastic collisions.

Meaning

Understanding:
Students will understand:
- To apply the following concepts to driving and/or car accidents: distance, displacement, time, velocity, speed, initial velocity, final velocity, acceleration, motion graphs, mass, kinetic energy, momentum, impulse, Conservation of Momentum, inelastic collisions, and elastic collisions.

Essential Questions:
Students will keep considering:
- What are the dangers of texting and driving?

Transfer

Students will be able to independently use their learning to:
- Apply their understanding of concepts and texting and driving to provide feedback to other groups.
- Showcase their understanding in labs and assessments.

Stage 2 – Student Evidence

Driving Question: What impact does texting and driving have?

<table>
<thead>
<tr>
<th>Final Artifact(s)</th>
<th>Learning Outcomes/Targets</th>
<th>Checkpoints/Formative Assessments</th>
<th>Instructional Strategies for All Learners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storyboard for PSA PSA</td>
<td>Collaborating together</td>
<td>Contract</td>
<td>Students will sign a contract at the beginning of the project in order to ensure collaboration of all students throughout the project.</td>
</tr>
<tr>
<td></td>
<td>Communicate to each other and the world</td>
<td>Contract</td>
<td>Within the contract the students will agree to communicate their work as well as praise/frustration to ensure the team completes quality work on time.</td>
</tr>
</tbody>
</table>
Stage 2 – Project Resources

<table>
<thead>
<tr>
<th>Required Resources</th>
<th>What artifact will resource specifically support?</th>
<th>How will resource support student learning toward artifact completion?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromebooks</td>
<td>Google Classroom, Labs, Storyboard</td>
<td>Students will use their chromebooks as a resource to all course information as well as be used daily in class.</td>
</tr>
<tr>
<td>Google Classroom</td>
<td>Daily Practice, Labs</td>
<td>Students will understand and apply the following concepts: distance, displacement, time, velocity, speed, initial velocity, final velocity, acceleration, motion graphs, mass, kinetic energy, momentum, impulse, Conservation of Momentum, inelastic collisions, and elastic collisions.</td>
</tr>
<tr>
<td>PASCO carts, track, software</td>
<td>Labs</td>
<td>Students will understand, calculate, and apply the following concepts: distance, displacement, time, velocity, initial velocity, final velocity, acceleration, motion graphs, mass, kinetic energy, momentum, impulse, Conservation of Momentum, inelastic collisions, and elastic collisions.</td>
</tr>
<tr>
<td>Graphing Paper</td>
<td>Daily Practice</td>
<td>Students will understand and apply displacement, time, velocity, and acceleration.</td>
</tr>
<tr>
<td>Rulers</td>
<td>Daily Practice</td>
<td>Students will understand and apply displacement, time, velocity, and acceleration.</td>
</tr>
<tr>
<td>Calculator</td>
<td>Daily Practice, Labs</td>
<td>Students will understand, and calculate the following concepts: displacement, velocity, initial velocity, final velocity, acceleration, motion graphs, mass, kinetic energy, momentum, impulse, Conservation of Momentum, inelastic collisions, and elastic collisions.</td>
</tr>
<tr>
<td>Medium for Storyboard</td>
<td>Storyboard</td>
<td>Students will create a storyboard for their PSA using a posterboard or Google Slides to apply concepts learned and prior knowledge of the dangers of texting and driving.</td>
</tr>
<tr>
<td>Videotape recorder</td>
<td>PSA</td>
<td>Students will act and film in their PSA following their created storyboard.</td>
</tr>
<tr>
<td>Editing software</td>
<td>PSA</td>
<td>Students will edit their PSA video using the software in order to have a comprehensible PSA.</td>
</tr>
<tr>
<td>Quizzes</td>
<td>Daily Practice, Labs</td>
<td>Students will show their understanding of the following concepts: distance, displacement, time, velocity, speed, initial velocity, final velocity, acceleration, motion graphs, mass, kinetic energy, momentum, impulse, Conservation of Momentum, inelastic collisions, and elastic collisions.</td>
</tr>
<tr>
<td>Final Assessment</td>
<td>Daily Practice, Labs</td>
<td>Students will show their understanding of the following concepts: distance, displacement, time, velocity, speed, initial velocity, final velocity, acceleration, motion graphs, mass, kinetic energy, momentum, impulse, Conservation of Momentum, inelastic collisions, and elastic collisions.</td>
</tr>
</tbody>
</table>
Project One Outline: Includes standards, project overview, and resources needed for the project.

<table>
<thead>
<tr>
<th>Scale</th>
<th>Daily Practice, Labs</th>
<th>Students will measure mass using a scale in order to calculate kinetic energy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring Tape / Meter Stick</td>
<td>Daily Practice, Labs</td>
<td>Students will measure distance using a meter stick or measuring tape in order to be used in various calculations.</td>
</tr>
<tr>
<td>Timer</td>
<td>Daily Practice, Labs</td>
<td>Students will measure time using a cellphone or stopwatch in order to be used in various calculations.</td>
</tr>
</tbody>
</table>

Public Audience: The final PSA of texting and driving will be displayed at Mentor Week. (Mentor Week is a week where professionals in the fields come and speak to the students on professionalism in the workplace as well as various personal improvement seminars.)

Stage 4 - Reflection

<table>
<thead>
<tr>
<th>Reflection Methods</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual feedback will be provided daily to daily practice using keys.</td>
<td>In the PSA there is 1 concept supporting the story line</td>
<td>In the PSA there are 2 different concepts supporting the story line</td>
<td>In the PSA there are 3 different concepts supporting the story line</td>
<td>In the PSA there are 4 different concepts supporting the story line</td>
<td>In the PSA there is 3 concept supporting the story line</td>
</tr>
<tr>
<td>Individual feedback will be provided to labs using keys.</td>
<td>The PSA lacks statistics or information</td>
<td>The PSA lacks 1-2 facts and/or accurate statistics</td>
<td>The PSA lacks 3 facts and/or accurate statistics</td>
<td>The PSA lacks 4 facts and/or accurate statistics</td>
<td>The PSA lacks 3 facts and/or accurate statistics</td>
</tr>
<tr>
<td>Individual feedback will be provided to quizzes and final assessment using keys.</td>
<td>The PSA lacks substantial solutions or advice</td>
<td>The PSA lacks 2 solutions or advice</td>
<td>The PSA lacks 3 solutions or advice</td>
<td>The PSA lacks 4 solutions or advice</td>
<td>The PSA lacks 3 solutions or advice</td>
</tr>
<tr>
<td>Students will have the opportunity to use feedback to improve individual work.</td>
<td>The script is appropriate, but is lacking detail in script as well as roles.</td>
<td>The script is appropriate, includes roles for each person, but is lacking detail.</td>
<td>The script is appropriate, detailed, and includes roles for each person.</td>
<td>The script is appropriate, detailed, and includes roles for each person.</td>
<td>The script is appropriate, detailed, and includes roles for each person.</td>
</tr>
<tr>
<td></td>
<td>The script shows little direction, is confusing, or is lacking dialogue.</td>
<td>The script shows a somewhat understandable flow for the PSA.</td>
<td>The script shows mostly clear and understandable flow for the PSA.</td>
<td>The script shows a clear and understandable flow for the PSA.</td>
<td>The script shows a clear and understandable flow for the PSA.</td>
</tr>
<tr>
<td></td>
<td>Does not create an emotional response</td>
<td>Creates an emotional response that does not have to do with texting and driving.</td>
<td>Creates a rich emotional response that somewhat matches the story line</td>
<td>Creates a rich emotional response to story line</td>
<td>Creates a rich emotional response to story line</td>
</tr>
<tr>
<td></td>
<td>The PSA lacks both creativity and originality.</td>
<td>The PSA shows group creativity but has no originality.</td>
<td>The PSA shows group creativity and some original ideas.</td>
<td>The PSA shows group creativity and the use of original ideas.</td>
<td>The PSA shows group creativity and the use of original ideas.</td>
</tr>
</tbody>
</table>

Notes:
Project One Rubric: Provides the students with an expectation of the project and the teacher with an assessment tool.

The calendar below is used for the pacing of the project as well as to determine the deadlines or due dates for work. The plan for this project was to cover a total of eight weeks, this is due to the large amounts of content to be covered as well as the opportunity for reflection on the project. Being that this is the first project, the first concept(s) the students see are essential and will be built upon in the project as well as throughout the year. It starts with kinematics and uses previous concepts to understand kinetic energy, momentum, impulse, and the Conservation of Momentum. Quizzes and formative assessments are spaced roughly every two weeks in order to showcase individual understanding in the assessment setting. The project days are also spaced
throughout the project to allow for connections of content to be continuously made back to the project.

Project One Calendar: The calendar provides the students and teacher with an expectation of what is done each day including due dates.
Sample Content Lesson

The sample content lesson included provides a lesson plan, notes, and a practice sheet for the students to complete during the span of the class period. The lesson provided allows for a teacher to see a typical day in the classroom. In PBL, there is very rarely lecturing used therefore, this lesson allows the students to discover acceleration and motion graphs through the completion of an obstacle course. The teacher is a facilitator in this setting as the students work at their own pace through the notes/obstacle course. The instructor checks the students work as they go and provides help when needed. After completing the notes in pairs or a group, the students then individually complete the practice to showcase their understanding of the concepts. The teacher provides feedback to the practice and returns it to the students to allow for growth.

<table>
<thead>
<tr>
<th>Subject/Course</th>
<th>Physics 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic</td>
<td>Kinematics</td>
</tr>
<tr>
<td>Lesson Title:</td>
<td>Acceleration and Motion Graphs</td>
</tr>
<tr>
<td>Lesson Duration</td>
<td>75 minutes</td>
</tr>
</tbody>
</table>
| Lesson Objectives | I can apply my motion in an obstacle course to acceleration.
| | I can apply my motion in an obstacle course to motion graphs. |
| Task List | Students will start with independently completing 5 questions related to the class prior on their whiteboards. (Velocity and their completion of the obstacle course.)
| | Have students hold up their answers to each question and go over as needed.
| | Students will complete the Obstacle Course Acceleration packet with a partner.
| | Students will call instructor over, per instruction in packet, to monitor progress and provide feedback.
| | After completing the packet, the students will independently complete the practice to showcase their knowledge on acceleration and motion graphs. |
| Materials Needed| Computers
| | Whiteboards
| | Rulers
| | Whiteboard markers
| | Erasers
| | Obstacle Course Acceleration Packet
| | Acceleration and Motion Graphs Practice |
In looking at your graphs for chart 1 and 2, what is the difference?

In looking at your graphs for chart 3 and 4, what is the difference?

Definitions:

Acceleration: The rate of change of velocity.

<table>
<thead>
<tr>
<th>Concept</th>
<th>Formula</th>
<th>Unit</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>t</td>
<td>s</td>
<td>$a = \frac{\Delta v}{\Delta t}$</td>
</tr>
<tr>
<td>Initial Time</td>
<td>t_i</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>Final Time</td>
<td>t_f</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>Initial Velocity</td>
<td>v_i</td>
<td>m/s</td>
<td></td>
</tr>
<tr>
<td>Final Velocity</td>
<td>v_f</td>
<td>m/s</td>
<td></td>
</tr>
<tr>
<td>Acceleration</td>
<td>a</td>
<td>m/s²</td>
<td></td>
</tr>
</tbody>
</table>

Before we apply acceleration to the obstacle course, practice solving these problems. (Have Mrs. Wharam-Santillo sign off before moving on.)

1. Calculate the acceleration of a car starting at 5° and ending at 23° in 20s.

2. Calculate the acceleration of a car from rest to 35° in 30s.
Name: ________________________

Acceleration and Motion Graph Practice

1. A car starts from rest and accelerates to 20 ft/s in 10s. What is their acceleration?

2. A car is traveling at 30 mph and looks at their phone, they do not see the car broken in front of them. They react and break after 3s. What was the car's acceleration while they came to a stop?

3. You are traveling at 20 mph and you look at your phone for 5s. When you glance at your phone for 3s. How much distance did you cover on the road with your eyes not on the road?

4. Draw the motion graphs for someone who is walking at a constant pace.

5. Draw the motion graphs for someone who is running at an accelerating rate.
Sample Project Lesson

The project lesson included provides the teacher/instructor with a lesson plan to span the class period. Once the teacher goes over the rubric, the students then work in their groups to meet the standards of the rubric through their own pacing.

<table>
<thead>
<tr>
<th>Subject/Course</th>
<th>Physics 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic</td>
<td>PSA Project Work</td>
</tr>
<tr>
<td>Lesson Title</td>
<td>Storyboard Planning</td>
</tr>
<tr>
<td>Lesson Duration</td>
<td>75 minutes</td>
</tr>
</tbody>
</table>

Lesson Objectives

- I can work together with my team to create a unique storyboard to meet the requirements found in the rubric.

Task List

- Provide students will groups as they arrive
- Go over the project rubric and their expectations
- Students work to create a storyboard for their PSA using Google Docs/Slides or on a posterboard

Materials Needed

- Chromebook
- Rubric
- Posterboard

Sample Lab Lesson

The sample lab lesson included provides the teacher with a lesson plan and lab for the students to complete. This lab was provided because it is inquiry based and requires the students to recall on their understanding of concepts.

<table>
<thead>
<tr>
<th>Subject/Course</th>
<th>Physics 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic</td>
<td>Conservation of Momentum</td>
</tr>
<tr>
<td>Lesson Title</td>
<td>Lab</td>
</tr>
<tr>
<td>Lesson Duration</td>
<td>75 minutes</td>
</tr>
</tbody>
</table>

Lesson Objectives

- I can create an elastic collision using the materials in front of me.
- I can calculate an elastic collision using measurements I collected.
- I can create an inelastic collision using the materials in front of me.
- I can calculate an inelastic collision using measurements I collected.

Task List

- In pairs, students will complete the Collisions Lab
- Turn in progress of completed lab. (Students will have 30 minutes the following class to complete.)

Materials Needed

- PASCO tracks
- PASCO motion sensors
- PASCO carts
- Calculators
- PASCO software
- Scales
Project One Sample Lessons: The lessons above include three types of lessons: content, lab, and project. Each of the lessons include the materials needed for the lesson.
Quiz 1

Name: __________________________

F1: Quiz 1

Directions: Please complete the following showing all work when necessary.

1. A car covers 60m in 3s, how fast were they traveling?

2. A person ran a mile (1609m) in 30s, what was their average velocity?

3. While traveling at 15m/s, a person looks at their phone for 5s. How much distance did they cover?

4. What is velocity?

5. If I am standing still, complete the following distance vs. time graph.

6. What motion is displayed below?

7. Complete the following graph based on the previous two.

8. A small takes 45s to cover 1m. What is their average velocity?

9. A volleyball player starts from rest and moves at a velocity of 4 m/s. In how to return a serve. What was the player's acceleration?

10. A puppy is sitting and suddenly starts to move. It takes the puppy 1.5s to run into the kitchen at an acceleration of 5 m/s². What was their final velocity?

11. An arrow is flying at 25m/s and then accelerates at 5 m/s² to score a touchdown. They accelerated over a 10s time frame. What was the distance they covered?

12. A stick throws a snowball and throws it 8m into the back of the net with an acceleration of 5 m/s². How fast was it travelling out before hitting the net?

Quiz 2

Name: __________________________

F2: Quiz 2

Directions: Please complete the following showing all work when necessary.

1. What is the definition of kinetic energy?

2. A student with a mass of 70kg is traveling at 10m/s, how much kinetic energy do they have?

3. If I double my velocity, how much will my kinetic energy increase by?

4. Draw the slope for the relationship of velocity and kinetic energy below.

5. A 70kg person is traveling 25 m/s; what is their momentum?

6. What is the impulse on a box that has a 20N force applied to it for 65 seconds?

7. A 100kg car is traveling at 20 m/s. They come to a stop in 5 seconds. What is the force needed to stop the car?

8. Two objects collide and bounce apart, what type of collision is this?

9. Two objects collide and stick/move together afterwards. What type of collision is this?

10. What is the definition of the Conservation of Momentum?

11. A 5kg ball rolls to the right at 5m/s. A 4kg ball is rolling towards the first ball at -3 m/s. The objects collide and stick to the 4kg ball rolling away at 1 m/s. What is the 5kg ball's velocity after the collision?

12. A 1500kg truck is stopped by a police car. The 1500kg car following the truck at 20 m/s warren and hits the back end. The two and car are now stuck together and moving, how fast are they moving together?
Formative Assessment

<table>
<thead>
<tr>
<th>Number</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A mass of 2 kg is traveling at 5 m/s. What is its kinetic energy?</td>
</tr>
<tr>
<td>2.</td>
<td>A car traveling at 15 m/s accelerates for 30 s at a uniform acceleration of 2.5 m/s². What was the velocity at the end of the 30 s?</td>
</tr>
<tr>
<td>3.</td>
<td>A car traveling at 30 m/s when the driver sees a child standing in the road. He takes 0.5 s to react, then steps on the brakes and slows to 15 m/s over 2 s. How far does the car go before it stops?</td>
</tr>
<tr>
<td>4.</td>
<td>It was once recorded that a Jaguar left skid marks that were 290 m in length. Assuming the Jaguar skidded to a stop with a constant acceleration of -1.3 m/s², determine the speed of the Jaguar before it began to skid.</td>
</tr>
<tr>
<td>5.</td>
<td>Complete the following graph based on the previous two and describe the motion.</td>
</tr>
<tr>
<td>6.</td>
<td>A leg ball is moving at 5 ft/s. It collides with a leg ball that was not moving. The leg ball now travels at 2 ft/s. How fast is the leg ball now moving?</td>
</tr>
<tr>
<td>7.</td>
<td>A student with a mass of 65 kg is traveling at 5 m/s. How much kinetic energy do they have?</td>
</tr>
<tr>
<td>8.</td>
<td>If I double my velocity, how much will my kinetic energy increase by?</td>
</tr>
<tr>
<td>9.</td>
<td>A 1500 kg car is traveling 25 m/s; what is their momentum?</td>
</tr>
<tr>
<td>10.</td>
<td>A leg ball is rolling at 2 ft/s; what is their momentum?</td>
</tr>
<tr>
<td>11.</td>
<td>A 3000 kg car traveling 25 m/s hits a wall and comes to a stop after some time. What would be the impulse?</td>
</tr>
<tr>
<td>12.</td>
<td>A student pushes a student in a chair with a 200 N force for 30 s. What would be the impulse?</td>
</tr>
<tr>
<td>13.</td>
<td>A leg ball is moving at 5 ft/s. It collides with a leg ball that was not moving. The leg ball now travels at 2 ft/s. How fast is the leg ball now moving?</td>
</tr>
<tr>
<td>14.</td>
<td>A 5000 kg car traveling 25 m/s moves to the other lane to pass a slow car. The 5000 kg truck heading the opposite direction at -30 m/s does not notice the car. The two collide and move together. What is their combined velocity?</td>
</tr>
</tbody>
</table>

Project One Assessments: Above are the different assessments needed for the project. Each of the assessments follow the calendar and allow for the content to be broken up along the project. The formative assessment is included to assess all concepts learned during the project.
Project Two

Project two allows for the students to have an authentic connection to hunting. This project will kick off during the first few weeks of hunting season and many of the students are avid hunters or have members in their family that hunt. The students will be creating a poster to draw an audience to an educational session on hunting. The students will also create a presentation for this informational session.

The resources for project two are for both the teacher/instructor and student alike. There is a project outline that outlines all of the standards to be addressed in the project, the entry event, a brief description of the project, student objectives, and resources necessary. To support the outline, there is a rubric that provides the students a clear idea of what to include in their poster and presentation as well as provides the teacher with an assessment tool for the project.

The calendar also provides the teacher and students with a sense of progress through the project. Students know when to complete graded assignments as well as provides dates for assessments. The sample lessons and supporting documents allow for the teacher to gain an idea of what a typical content day, lab day, and project day would look like in this curriculum. The assessments also provide the teacher a resource to assess individual progress.
<table>
<thead>
<tr>
<th>Title</th>
<th>Curriculum Design Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Project:</td>
<td>Hunting Education</td>
</tr>
<tr>
<td>Duration:</td>
<td>9 weeks</td>
</tr>
<tr>
<td>Subject/Course:</td>
<td>Physical Science - How Things Work</td>
</tr>
<tr>
<td>Teacher(s):</td>
<td>Miranda</td>
</tr>
<tr>
<td>Grade Level:</td>
<td>10</td>
</tr>
</tbody>
</table>

Driving Question
What should hunters know before going out to hunt?

Project Snapshot

Stained Inquiry

- **Standards:**
 - HS-P3.2-1: Analyze data to support the claim that Newton’s Second Law of Motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.
 - HS-EPS1-2: Use mathematical or computational representations to predict the motion of objects in the solar system.
 - P-EPS1-1: Use tools and materials to design and build a device that causes an object to move faster with a push or a pull.
 - E-EPS1-5: Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.
 - E-P3.2-2: Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.
 - 3-P3.2-1: Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.
 - 5-P3.2-1: Support an argument that the gravitational force exerted by Earth on objects is directed down.
 - MS-P3.2-2: Plan and conduct an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.
 - MS-P3.2-3: Construct, use, and present an argument to support the claim that when work is done on or by a system, the energy of the system changes as energy is transferred to or from the system.

Authenticity: The students are hunters or have a relative that hunts. Will be paired with the physical education teacher to co-teach the project and have the students shooting bow and arrow.

Voice and Choice: The students can design and create their campaigns.

Critique and Revision: Students will submit outlines and rough drafts to receive feedback from peers and staff.

Public Product: Poster and presentation educating new hunters on hunting.

Entry Event: Students will watch an animated clip on archery. Clip: https://www.youtube.com/watch?v=zyL5b7pZOGg

Stage 1 - Desired Results

<table>
<thead>
<tr>
<th>Established Goals</th>
<th>Acquisition</th>
</tr>
</thead>
</table>
| 1. I can create a list of important information for how hunting. | Students will know:
 - The following concepts: projectile motion (horizontal and vertical motion), Newton’s Laws, center of mass, free body diagrams, weight (force due to gravity), centripetal force, force due to friction, Universal Law of Gravitation, work, and power. |
| 2. I can create a list of concepts that apply to how and where hunting. | The difference between horizontal and vertical motion. |
| 3. I can create a rough draft poster and presentation to educate new hunters. | How to calculate horizontal motion (range, velocity, and acceleration). |
| 4. I can improve my rough drafts using feedback. | How to calculate vertical motion (height, velocity, and acceleration). |

Understanding:

- Students will understand:
 - To apply the following concepts to hunting: projectile motion (horizontal and vertical motion), Newton’s Laws, center of mass, free body diagrams, weight (force due to gravity), centripetal force, force due to friction, Universal Law of Gravitation, work, and power.

Essential Questions:

- Students will keep considering: What should hunters know before going out to hunt?
Stage 2 – Student Evidence

<table>
<thead>
<tr>
<th>Driving Question</th>
<th>What should hunters know before going out to hunt?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Artifact(s)</td>
<td>Learning Outcomes/Targets</td>
</tr>
<tr>
<td>Presentations, Performances, Products, and/or Services</td>
<td>Content & 21st-century competencies needed by students to successfully complete products</td>
</tr>
<tr>
<td>Checkpoints/Formative Assessments</td>
<td>To check for learning and ensure students are on track</td>
</tr>
<tr>
<td>Instructional Strategies for All Learners</td>
<td>Provided by teacher; other staff, experts; includes scaffolds, materials, lessons aligned to learning outcomes and formative assessments</td>
</tr>
</tbody>
</table>

Poster for Hunting

- Collaborating together
- Communicate with each other and the world

Contract

- Students will sign a contract at the beginning of the project in order to ensure collaboration of all students throughout the project.
- Within the contract, the students will agree to communicate their work as well as praise/frustration to ensure the team completes quality work on time.

Stage 3 – Project Resources

<table>
<thead>
<tr>
<th>Required Resources</th>
<th>What artifact will resource specifically support?</th>
<th>How will resource support student learning toward artifact?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromebooks</td>
<td>Google Classroom, Labs, Storyboard</td>
<td>Students will use their chromebooks as a resource to all course information as well as will be used daily in class.</td>
</tr>
<tr>
<td>Google Classroom</td>
<td>Daily Practice, Labs</td>
<td>Students will understand and apply the following concepts: projectile motion (horizontal and vertical motion), Newton’s Laws, center of mass, free body...</td>
</tr>
</tbody>
</table>
Project Two Outline

Includes standards, project overview, and resources needed for the project.

<table>
<thead>
<tr>
<th>Public Audience</th>
<th>The final poster and presentation will be recorded and presented to various professionals.</th>
</tr>
</thead>
</table>

Stage 4 - Reflection

<table>
<thead>
<tr>
<th>Reflection Methods</th>
<th>Individual feedback will be provided daily to daily practice using keys.</th>
<th>Team feedback will be provided to the poster through peer feedback and instructor feedback.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Individual feedback will be provided to labs using keys.</td>
<td>Team feedback will be provided to the presentation through peer feedback and instructor feedback.</td>
</tr>
<tr>
<td></td>
<td>Individual feedback will be provided to quizzes and final assessment using keys.</td>
<td>Teams will have the opportunity to improve their project work.</td>
</tr>
<tr>
<td></td>
<td>Students will have the opportunity to use feedback to improve individual work.</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

Project Two Outline: Includes standards, project overview, and resources needed for the project.
Project Two Rubric: Provides the students with an expectation of the project and the teacher with an assessment tool.
The calendar for project two is spaced over nine weeks meeting wise. This project similarly to project one includes a large amount of content therefore it requires more time to cover. In addition to the content spanning across this time, the project is also co-taught with the physical education teacher in which coordinating time in the gym to shoot archery is a factor. Due to the two breaks spanning this project, the project was broken into two pieces. Prior to the November break, the students will have taken the first quiz as well as completed a lab that involves analyzing their individual archery skills. During this time, the students will have learned projectile motion as well as taken a quiz to assess individual knowledge. The lab that is done in class is used as the first two pieces of the rubric. After returning from break, the students will learn all concepts related to forces, work, and power. The students will also take a quiz or assessment roughly every two weeks to showcase their individual understanding in an assessment setting. Project days are planned into the calendar to allow for the students to continuously connect back to the educating hunters poster and archery component.
Project Two Calendar: The calendar provides the students and teacher with an expectation of what is done each day including due dates.

Sample Content Lesson

The sample content lesson included provides a lesson plan, notes, and a practice sheet for the students to complete during the span of the class period. The lesson provided allows for a teacher to see how Newton’s First and Third Laws can be discovered in the classroom. The students use a simple activity of pushing someone in a chair to discover Newton’s First Law and push each others hands to discover Newton’s Third Law. The teacher is a facilitator in this setting as the students work at their own pace through the activities/notes. The instructor checks
the students work as they go and provides help when needed. After completing the notes in a group, the students then individually complete the practice to showcase their understanding of the concepts. The teacher provides feedback to the practice and returns it to the students to allow for growth.

<table>
<thead>
<tr>
<th>Subject/Course</th>
<th>Physics 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic</td>
<td>Educating Hunters</td>
</tr>
<tr>
<td>Lesson Title</td>
<td>Newton's First and Third Law</td>
</tr>
<tr>
<td>Lesson Duration</td>
<td>75 minutes</td>
</tr>
<tr>
<td>Lesson Objectives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I can use my movement to describe Newton’s First Law.</td>
</tr>
<tr>
<td></td>
<td>I can use my movement to describe Newton’s Third Law.</td>
</tr>
<tr>
<td>Task List</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Provide students will groups as they arrive</td>
</tr>
<tr>
<td></td>
<td>go over packet and safety concerns</td>
</tr>
<tr>
<td></td>
<td>Half the class go to activity one, half complete activity two (when complete switch)</td>
</tr>
<tr>
<td>Materials Needed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Packet</td>
</tr>
<tr>
<td></td>
<td>Chairs</td>
</tr>
</tbody>
</table>

Let’s Go For A Ride
(Progression 1)

Trial One
- q. Assign the following roles within your team:
 - Sitting in the chair →
 - Standing to the left of the chair →
 - Standing to the right of the chair →
 - Observer of experiment →

- Once you’ve decided upon your roles, be prepared to describe the feelings/motion of your body during the experiment. Observer of the experiment: you should be monitoring the motion of ALL experiment participants.
- Have one team member sit in the chair. Have one team member stand two feet on either side of the chair. (2 squares) (Refer to the diagram below)

Trial Two
- q. Assign the following roles within your team: “Should be different from before”
 - Sitting in the chair →
 - Standing to the left of the chair →
 - Standing to the right of the chair →
 - Observer of experiment →

- Once you’ve decided upon your roles, be prepared to describe the feelings/motion of your body during the experiment. Observer of the experiment: you should be monitoring the motion of ALL experiment participants.
- Have one team member sit in the chair. Have one team member stand two feet on either side of the chair. (2 squares) (Refer to the diagram below)

- The team member on the left or facing the back of the chair, walk up to the chair and place your hands on the back of the chair. (Refer to the diagram below)

- Gently push the chair.
- Describe the feelings/motions of your body throughout the entire experiment

<table>
<thead>
<tr>
<th>Sitting in chair</th>
<th>Standing left of chair</th>
<th>Standing right of chair</th>
<th>Observer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitting in chair</td>
<td>Standing left of chair</td>
<td>Standing right of chair</td>
<td>Observer</td>
</tr>
</tbody>
</table>
Trial Three

- Assign the following roles within your team: “Should be different from before”
 - Sitting in the chair → __________________
 - Standing to the left of the chair → __________________
 - Standing to the right of the chair → __________________
 - Observer of experiment → __________________

- Once you’ve decided upon your roles, be prepared to describe the feelings/motion of your body during the experiment. Observer of the experiment - you should be monitoring the motion of all experiment participants.

- Have one team member sit in the chair. Have one team member stand two feet on either side of the chair (2 squares) (Refer to the diagram below)

- The team member on the left or facing the back of the chair, walk up to the chair and place your hands on the back of the chair. (Refer to the diagram below)

- Gently push the chair.
- Describe the feelings/motions of your body throughout the entire experiment

<table>
<thead>
<tr>
<th>Sitting in chair</th>
<th>Standing left of chair</th>
<th>Standing right of chair</th>
<th>Observer</th>
</tr>
</thead>
</table>

- Answer the following questions:
 - Prior to being pushed, was the person sitting in the chair moving? Why or why not?

- After being pushed, what happened to the person sitting in the chair? Why do you think this happened?

- What happened to the person sitting in the chair when caught by the person standing on the right side? Why do you think this happened?

- Compare the motions/feelings of your entire team for each trial of the experiment.

- Based on all of your observations, what conclusions can be made while sitting in the chair? Be sure to thoroughly explain your response.

- Based on all of your observations, what conclusions can be made while standing to the left of the chair? Be sure to thoroughly explain your response.

- Based on all of your observations, what conclusions can be made while standing to the right of the chair? Be sure to thoroughly explain your response.

- Based on all of your observations, what conclusions can be made while you were the observer? Be sure to thoroughly explain your response.

Definitions:

- Force: A push or a pull on a mass.
- Newton’s First Law:
 - An object at rest, stays at rest unless acted on by an unbalanced force.
 - An object travelling at a constant velocity, stays at a constant velocity unless acted on by an unbalanced force.

<table>
<thead>
<tr>
<th>Concept</th>
<th>Variable</th>
<th>Unit/Measured In</th>
<th>Example(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force</td>
<td>F</td>
<td>Newtons - N</td>
<td></td>
</tr>
</tbody>
</table>

- Newton’s First Law

- How does this activity apply to Newton’s First Law?
Who’s the strongest?
(Activity 2)

→ Make a prediction, determine who you think is your strongest team member?

☑ Within your team, assign “roles”:
 ☑ A → __________________________
 ☑ B → __________________________
 ☑ C → __________________________
 ☑ D → __________________________

☑ Team Members A and B:
 ☑ Stand two feet across (two floor tiles/two arm lengths) across from each other with your feet shoulder width apart.
 ☑ Place your hands up as though you are about to give a double high five
 ☑ Push your team members hands.
 ☑ The first person to move their feet or “fall over” loses

 A vs. B, winner __________________________

 A vs. C, winner __________________________

 A vs. D, winner __________________________

 B vs. C, winner __________________________

 B vs. D, winner __________________________

Person who won the most: __________________________

→ When your hands are together, who is pushing who?

→ Which round took the longest to declare a winner? Why do you think that is?

Name: __________________________

1. List three different forces and describe how they are a force.

2. A student goes bowling at the bowling alley.
 a. She rolls the bowling ball down the aisle and wants to know what law would apply to this scenario right before the ball hits the pins. Which law does this apply to and how?

 b. The bowling ball now hits the pins and gets a strike. Which law does this apply to and how?

3. Draw an “action/reaction pair” (an example of Newton’s Third Law) and explain how it applies to Newton’s Third Law.
Sample Project Lesson

The project lesson included provides the teacher/instructor with a lesson plan to span the class period. After providing the quiz, included in the assessment section, the students will then work on improving their posters with the provided feedback.

<table>
<thead>
<tr>
<th>Subject/Course</th>
<th>Physics 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic</td>
<td>Educating Hunters</td>
</tr>
<tr>
<td>Lesson Title</td>
<td>Quiz / Improve Poster and Presentation</td>
</tr>
<tr>
<td>Lesson Duration</td>
<td>75 minutes</td>
</tr>
<tr>
<td>Lesson Objectives</td>
<td></td>
</tr>
</tbody>
</table>
 - I can work together with my team to improve our poster and presentation according to feedback and the rubric. |
| Task List |
 - Quiz
 - Work with team to improve poster and presentation by designating tasks according to feedback and the rubric. |
| Materials Needed |
 - Quiz
 - Rubric
 - Prior Rough Drafts |

Sample Lab Lesson

The sample lab lesson included provides the teacher with a lesson plan and lab for the students to complete. This lab was provided because it is inquiry based, it requires the students to recall on their understanding of concepts, and asks the students to recall their actions done in physical education in order to complete the lab.

<table>
<thead>
<tr>
<th>Subject/Course</th>
<th>Physics 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic</td>
<td>Educating Hunters</td>
</tr>
<tr>
<td>Lesson Title</td>
<td>Projectile Motion / Archery Lab</td>
</tr>
<tr>
<td>Lesson Duration</td>
<td>75 minutes - 2 Classes</td>
</tr>
<tr>
<td>Lesson Objectives</td>
<td></td>
</tr>
</tbody>
</table>
 - I can measure my time, range, and height before shooting a target with a bow and arrow.
 - I can analyze a video to determine the horizontal velocity of an arrow.
 - I can calculate the range based on my measurements and video analysis.
 - I can calculate the height based on my measurements and known values.
 - I can calculate percent error based on measurements and calculations. |
| Task List |
 - Provide students with groups as they arrive
 - Go over lab packet / safety instructions.
 - Divide teams into the gym to record a shot at a target with bow and arrows.
 - Record 4 videos with your team and record measurements.
 - Perform calculations. |
| Materials Needed |
 - Packet
 - Calculator
 - Video Camera
 - Tripod
 - Bow
 - Arrows
 - Target |
Project Two Sample Lessons: The lessons above include three types of lessons: content, lab, and project. Each of the lessons include the materials needed for the lesson.
Quiz 1

Directions: Complete the following questions, showing all work when necessary including equations and units.

1. A maximum horizontal displacement is also known as the ________________

2. Vertical displacement is also known as the ________________

3. A projectile is shot horizontally out of a cannon with a velocity of 75 ft. It takes 5 seconds to reach the ground.
 a. What is the projectile's horizontal velocity just before hitting the ground?

 b. What is the projectile's vertical velocity just before hitting the ground?

 c. What was the range?

4. Label the following triangle and determine the horizontal and vertical velocities for a projectile fired at 100 yd at an angle of 30°.

 a. What was the cannonball's initial horizontal velocity?

 b. What was the cannonball's initial vertical velocity?

 c. What was the cannonball's horizontal velocity just before hitting the ground?

 d. How long did it take to reach the maximum height?

 e. What was the maximum height the cannonball reached?

 f. What was the cannonball's vertical velocity just before hitting the ground?

 g. What was the range?

Quiz Two

PART I: Conceptual

Name:

Directions: There are two parts to this quiz, one conceptual and one mathematical. Complete both parts and show all work when necessary.

<table>
<thead>
<tr>
<th>Word Bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion</td>
</tr>
<tr>
<td>Acceleration</td>
</tr>
<tr>
<td>Mass</td>
</tr>
<tr>
<td>Force</td>
</tr>
<tr>
<td>Vector</td>
</tr>
<tr>
<td>Net</td>
</tr>
<tr>
<td>Unbalanced</td>
</tr>
<tr>
<td>Opposite</td>
</tr>
<tr>
<td>Equal</td>
</tr>
<tr>
<td>Constant</td>
</tr>
<tr>
<td>Momentum</td>
</tr>
</tbody>
</table>

Newton's First Law states:

- An object traveling at ________________ stays at ________________ unless acted on by an ________________ force.

- An object at ________________ stays at ________________ unless acted on by an ________________ force.

Newton's Second Law states:

- The ________________ of an object depends directly upon the ________________ acting upon the object, and inversely upon the ________________ of the object.

Newton's Third Law states:

- When one object exerts a force on a second object, the second object exerts a force on the first that is ________________ in magnitude and ________________ in direction.

PART II: Mathematical

Complete the following questions showing all work when necessary.

→ What is the unbalanced force required to accelerate a 2kg mass at 4 m/s²?

→ Someone hits a golf ball with a mass of 0.3 kg, which accelerates at a rate of 35 m/s². What amount of force acted on the ball?

→ You push your brother on a sled down the hill. The mass of the sled and your brother is 40 kg, and they accelerates at 5 m/s. What force did you push with?

→ What effect does doubling the net force have on acceleration? (Don’t just say it increases or decreases, by what factor does it increase or decrease?)

→ What effect does doubling the mass have on acceleration? (Don’t just say it increases or decreases, by what factor does it increase or decrease?)

→ What effect does doubling the acceleration have on the net force? (Don’t just say it increases or decreases, by what factor does it increase or decrease?)

→ Write the following motion pairs for the four scenarios below.

- A. ________________
- B. ________________
- C. ________________

50
Quiz Three

Formative Assessment

Name: ____________________________

Directions: Please complete the following problems and show all work when necessary.

1. A constant horizontal force (x - y) of 6N is applied to a box 3m. It took 1.5s to move the box 3m.
 a. How much work did it require to move the box?
 b. How much power was needed?

2. A constant force of 18N is applied to a box to move it 10m at an angle of 45°. It took 3s to move the box the 10m.
 a. How much work did it require to move the box?
 b. How much power was required to move the box?

3. Choose one of the following activities
 a. Bowling
 b. Driving

 Explain how the activity you choose applies to each of Newton’s Laws.

<table>
<thead>
<tr>
<th>1st Part of N1</th>
<th>2nd Part of N1</th>
<th>N2</th>
<th>N3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation:</td>
<td>Explanation:</td>
<td>Explanation:</td>
<td>Explanation:</td>
</tr>
</tbody>
</table>

4. Someone hits a golf ball with a mass of 0.13kg which accelerates at a rate of 15 m/s². What amount of force acted on the ball?

5. You push your brother on a sled down the hill. The mass of the sled and your brother is 45kg and they accelerate at 5 m/s². What force did you push with?

6. Write the reaction pair for each of the scenarios below.

 ![Reaction Pair]

7. Draw a cellphone and label its center of mass.

8. A cell phone and a table are next to each other. Which object would have the greatest inertia and why?

9. Complete the following FBD’s so that they are in equilibrium.

 ![FBDs]
Project Two Assessments: Above are the different assessments needed for the project. Each of the assessments follow the calendar and allow for the content to be broken up along the project. The formative assessment is included to assess all concepts learned during the project.

Project Three

Project three allows for the students to get creative and create an escape room based on the concepts they learn during the project. This project will kick off by having them escape a room that the instructor created using concepts the students have learned throughout the year. In getting creative, the teams will create problems/questions/riddles for a team to solve as well as set up the room in a way that allows for a unique experience.

The resources for project three are for both the teacher/instructor and student alike. There is a project outline that outlines all of the standards to be addressed in the project, the entry event, a brief description of the project, student objectives, and resources necessary. To support
the outline, there is a rubric that provides the students a clear idea of what to include in their escape room as well as provides the teacher with an assessment tool for the project. The calendar also provides the teacher and students with a sense of progress through the project. Students know when to complete graded assignments as well as provides dates for assessments. The sample lessons and supporting documents allow for the teacher to gain an idea of what a typical content day, lab day, and project day would look like in this curriculum. The assessments also provide the teacher a resource to assess individual progress.

<table>
<thead>
<tr>
<th>Name of Project:</th>
<th>Escape Room</th>
<th>Duration: 4 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject/Course:</td>
<td>Physical/How Things Work</td>
<td>Teacher (T): 10</td>
</tr>
<tr>
<td>Grade Level:</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Project Summary:
Create a series of problems for someone to solve to be able to escape a locked room.

Standard Inquiry:
- HS-PS4-1: Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.
- HS-PS4-2: Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motion of particles (objects) and energy associated with the relative position of particles (objects).
- HS-PS4-3: Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.
 - a. HS-PS4-3: Model and refine a device that works within given constraints to convert one form of energy into another form of energy.
 - b. HS-PS4-3: Model and refine a device that works within given constraints to convert one form of energy into another form of energy.
- MS-PS4-5: Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

Authenticity:
- The students have heard or been in an escape room. They can use their problem-solving skills to figure out the escape.
- Voice and Choice: The students can design and create their escape room.

Assessment:
- Students will submit rough drafts to receive feedback from peers and staff.
- Public product: Escape room for others to participate in.

Entry Event: Students will walk into an escape room that they have set up. They will solve a series of problems they have learned thus far to “escape” the room.

<table>
<thead>
<tr>
<th>Stage 1 – Desired Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Established Goals:</td>
</tr>
<tr>
<td>- I can determine the</td>
</tr>
<tr>
<td>number of problems</td>
</tr>
<tr>
<td>I want someone to solve</td>
</tr>
<tr>
<td>in order to escape.</td>
</tr>
<tr>
<td>- I can create at least 3</td>
</tr>
<tr>
<td>problems for someone</td>
</tr>
<tr>
<td>to solve in order to</td>
</tr>
<tr>
<td>escape.</td>
</tr>
<tr>
<td>- I can design the</td>
</tr>
<tr>
<td>layout of the room</td>
</tr>
<tr>
<td>in order to hide clues/</td>
</tr>
<tr>
<td>problems.</td>
</tr>
<tr>
<td>- I can improve my</td>
</tr>
<tr>
<td>rough drafts using</td>
</tr>
<tr>
<td>feedback.</td>
</tr>
</tbody>
</table>

Essential Questions:
- What concepts do I need to know to work my way out of this room?

Understanding:
- To apply the following concepts in an escape room: conversion, vector addition, free fall, gravitational potential energy, and the Conservation of Energy.
- How to calculate the Conservation of Energy.
- How to calculate gravitational potential energy.
- How to calculate the Conservation of Energy.

Essential Questions:
- What concepts do I need to know to work my way out of this room?

Transform:
- Students can independently use their understanding to...
 - Apply their understanding of concepts and escape rooms to provide feedback to other groups.
 - Share their understanding in labs and assessments.
<table>
<thead>
<tr>
<th>Stage 2 – Student Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driving Question: What concepts do I need to know to work my way out of this room?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Final Artifact(s)</th>
<th>Learning Outcomes/Targets</th>
<th>Checkpoints/Formative Assessments</th>
<th>Instructional Strategies for All Learners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentations, Performances, Products, and/or Services</td>
<td>Creative & Critical thinking needed to successfully complete products</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Questions for inside the escape room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design set up of the escape room</td>
</tr>
<tr>
<td>Key for solving the escape room</td>
</tr>
</tbody>
</table>

Collaborating together	Contract	Students will sign a contract at the beginning of the project in order to ensure collaboration of all students throughout the project.
Communicate to each other and the world	Contract	Within the contract the students will agree to communicate their work as well as praise/frustration to ensure the team completes quality work on time.
Critically think and develop problems and design of their escape room	Checkpoints of questions and room design	These points will be assessed using a rubric distributed to students at the beginning of the project.
Critically think about concepts	Daily Practice (Entrance and Exit Tickets)	The entrance and exit tickets will have a key that is used to provide feedback to the students on their progress of understanding the concept(s). The lab will have a key that will be used to provide feedback to the students in order to assess their understanding. Students will be provided the opportunity to improve their work within a week time frame to show their understanding.

<table>
<thead>
<tr>
<th>Final Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatively develop an escape room</td>
</tr>
</tbody>
</table>

| Checkpoints of questions and room design | Final Draft of Questions with Keys | Final Draft of Room setup with key | Students will research different ways to set up an escape room, for example riddles, combination locks, and puzzles. |

<table>
<thead>
<tr>
<th>Stage 3 – Project Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Resources On-site, people, facilities, equipment, materials, community resources</td>
</tr>
</tbody>
</table>

Chromebooks	Google Classroom, Labs, Questions for Escape Room	Students will use their chromebooks as a resource to all course information as well as will be used daily in class.
Google Classroom	Daily Practice, Labs	Students will understand and apply the following concepts: conversions, vector addition, free fall, gravitational potential energy, and the Conservation of Energy.
Foam tracks and marbles	Lab	Students will understand, calculate, and apply the following concepts: gravitational potential energy and the Conservation of Energy.
Phet Simulations	Daily Practice, Lab	Students will understand, calculate, and apply the following concepts: gravitational potential energy and the Conservation of Energy.
Graphing Paper	Daily Practice	Students will display graphical understanding of concepts.
Rulers	Daily Practice	Students will use a ruler to support their understanding of concepts.
Calculator	Daily Practice, Labs	Students will understand, and calculate the following concepts: conversions, vector addition, free fall, gravitational potential energy, and the Conservation of Energy.
Google Document	Questions	Students will create their questions for the escape room in a Google Document to ensure clarity.
Project Three Outline: Includes standards, project overview, and resources needed for the project.
Project Three Rubric: Provides the students with an expectation of the project and the teacher with an assessment tool.

Project three is a shorter project in respect to the other projects as it spans four weeks on the calendar. There is less content in this project which leads to the smaller timeline and the placement of this project allows for the students to have a “break” from the longer projects to work on a smaller one. Though it is shorter, the project’s content is not any less valuable. It starts with vector addition and potential energy which leads to Conservation of Energy. This project only has the formative assessment due to the content load, however there are labs that are given every week to ensure that the students understand the concepts and the application of them. Aside from the first day, the project days are placed at the end of this project to allow for them to plan and create the room in consecutive days.
Project Three Calendar: The calendar provides the students and teacher with an expectation of what is done each day including due dates.

Sample Content Lesson

The sample content lesson included provides a lesson plan, notes, and a practice sheet for the students to complete during the span of the class period. This lesson was chosen to include as there are some concepts that require repetition in order to master the process, conversions is one of those processes. After completing the notes in pairs, the students then individually complete the practice to showcase their understanding of the concepts. The teacher provides feedback to the practice and returns it to the students to allow for growth.
Sample Project Lesson

The project lesson included provides the teacher/instructor with a lesson plan to span the class period. The students will use their rubric in their groups to meet the standards through their own pacing.

<table>
<thead>
<tr>
<th>Subject/Course</th>
<th>Physics 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic</td>
<td>Escape Room</td>
</tr>
<tr>
<td>Lesson Title</td>
<td>Escape Room Planning</td>
</tr>
<tr>
<td>Lesson Duration</td>
<td>75 minutes</td>
</tr>
</tbody>
</table>

Lesson Objectives

- I can apply my knowledge conversions, free fall, potential energy, and conservation of energy to create problems/questions for a team to solve.
- I can create a key for my questions/problems.
- I can draw where I plan to place each of my questions in the room.
- I can draw a key of a successful completion of the escape room.

Task List

- Design Escape Room with team
- Create a key for the Escape Room
- Create the questions/problems to be solved in the room
- Create a key for the questions/problems

Materials Needed

- Google Document
- Materials brought from home for the Escape Room (combination locks, boxes, etc.)
Sample Lab Lesson

The sample lab lesson included provides the teacher with a lesson plan and lab for the students to complete. This lab was provided because it applies to the students' lives by using a park they regularly attend.

<table>
<thead>
<tr>
<th>Subject/Course</th>
<th>Physics 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic</td>
<td>Escape Room</td>
</tr>
<tr>
<td>Lesson Title</td>
<td>Conversion and Vector Addition Lab</td>
</tr>
<tr>
<td>Lesson Duration</td>
<td>75 minutes</td>
</tr>
<tr>
<td>Lesson Objectives</td>
<td></td>
</tr>
<tr>
<td>- I can apply my knowledge of conversions to Summer Camp.</td>
<td></td>
</tr>
<tr>
<td>- I can apply my knowledge of vector addition to a real scenario (summer camp).</td>
<td></td>
</tr>
<tr>
<td>Task List</td>
<td></td>
</tr>
<tr>
<td>- Conversion and Vector Addition Lab with partner</td>
<td></td>
</tr>
<tr>
<td>Materials Needed</td>
<td></td>
</tr>
<tr>
<td>- Conversion and Vector Addition Lab</td>
<td></td>
</tr>
<tr>
<td>- Rulers</td>
<td></td>
</tr>
<tr>
<td>- Colored Pencil [Red]</td>
<td></td>
</tr>
<tr>
<td>- Calculator</td>
<td></td>
</tr>
</tbody>
</table>

Narrative:

Project Three Sample Lessons: The lessons above include three types of lessons: content, lab, and project. Each of the lessons include the materials needed for the lesson.
Project Three Assessment: Above is the assessment needed for the project. The formative assessment is included to assess all concepts learned during the project.

Project Four

Project four allows for the students to utilize research strategies to support their side of the debate. This project will kick off by having them read two different, conflicting articles on the effect technology has on one’s health. Through their research the students will be able to
form an argument as well as research the opposers viewpoint to have a well rounded debate. The students will also get creative in the creation of the concept overview. In the overview, the students will address each of the concepts learned during the project in order to inform someone who does not know physics.

The resources for project four are for both the teacher/instructor and student alike. There is a project outline that outlines all of the standards to be addressed in the project, the entry event, a brief description of the project, student objectives, and resources necessary. To support the outline, there is a rubric that provides the students a clear idea of what to include in their debate plan and concept overview as well as provides the teacher with an assessment tool for the project. The calendar also provides the teacher and students with a sense of progress through the project. Students know when to complete graded assignments as well as provides dates for assessments. The sample lessons and supporting documents allow for the teacher to gain an idea of what a typical content day, lab day, and project day would look like in this curriculum. The assessments also provide the teacher a resource to assess individual progress.
Entry Event: Students will read two articles on electronics and health. The first article will provide a positive side to electronics and health while the second article will provide a negative side to electronics and health. The students will then have to decide which “side” they support for the debate.

Stage 1 – Desired Results

Established Goals:
- I can find 3 articles to support my argument.
- I can find 3 articles to refute my argument.
- I can create a debate plan that has key points for when I debate.
- I can create a document that describes each of the concepts learned during this project.
- I can improve my rough drafts using feedback.

Acquisition

- Students will know:
 - The following concepts: atom, nucleus, Coulomb’s Law, power, energy, magnetic fields, electric fields, voltage, current, resistance, series circuits, and parallel circuits.
 - The difference between series and parallel circuits.
 - How to calculate Coulomb’s Law.
 - How to calculate electrical power.
 - How to calculate voltage.
 - How to calculate current.
 - How to calculate resistance.
 - How to calculate series circuits.
 - How to calculate parallel circuits.

Meaning

- **Understanding:** Students will understand:
 - To apply the following concepts to their debate: atom, nucleus, Coulomb’s Law, power, energy, magnetic fields, electric fields, voltage, current, resistance, series circuits, and parallel circuits.
 - What a debate is and how to conduct themselves professionally in a debate.
 - How to create a concept overview that is informative and inviting.

Essential Questions: Students will be considering...
- Do electronics have a negative impact on one's health?

Transfer

- Students will be able to independently use their learning to...
 - Apply their understanding of concepts to provide feedback to other groups.
 - Showcase their understanding in labs and assessments.

Stage 2 – Student Evidence

Driving Question: Do electronics have a negative impact on one's health?

<table>
<thead>
<tr>
<th>Final Artifacts</th>
<th>Learning Outcomes/Targets</th>
<th>Checkpoints/Formative Assessments</th>
<th>Instructional Strategies for All Learners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentations, Performances, Products, and/or Services</td>
<td>Content & 21st century competencies needed by students to successfully complete projects</td>
<td>To check for learning and ensure students are on track</td>
<td>Provided by teacher, other staff, experts; includes scaffolds, materials, lessons aligned to learning outcomes and formative assessments</td>
</tr>
<tr>
<td>Concept Overview</td>
<td>Collaborating together</td>
<td>Contract</td>
<td>Students will sign a contract at the beginning of the project in order to ensure collaboration of all students throughout the project.</td>
</tr>
<tr>
<td>Document</td>
<td>Communicate to each other and the world</td>
<td>Contract</td>
<td>Within the contract the students will agree to communicate their work as well as praise/frustration to ensure the team completes quality work on time.</td>
</tr>
<tr>
<td>Debate Plan</td>
<td>Critically think and develop their debate plan</td>
<td>Checkpoints of debate research</td>
<td>These points will be assessed used a rubric distributed to students at the beginning of the project.</td>
</tr>
<tr>
<td></td>
<td>Critically think about concepts</td>
<td>Final Draft Debate Plan</td>
<td>The entrance and exit tickets will have a key that is used to provide feedback to the students on their progress of understanding the concept(s). The labs will have a key that will be used to provide feedback to the students in order to assess their understanding.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Labs</td>
<td></td>
</tr>
</tbody>
</table>
Stage 3 – Project Resources

<table>
<thead>
<tr>
<th>Required Resources</th>
<th>What artifact will resource specifically support?</th>
<th>How will resource support student learning toward artifact completion?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromebooks</td>
<td>Google Classroom, Labs</td>
<td>Students will use their chromebooks as a resource to all course information as well as be used daily in class.</td>
</tr>
<tr>
<td>Google Classroom</td>
<td>Daily Practice, Labs</td>
<td>Students will understand and apply the following concepts: atom, nucleus, Coulomb’s Law, power, energy, magnetic fields, electric fields, voltage, current, resistance, series circuits, and parallel circuits.</td>
</tr>
<tr>
<td>Phet simulations</td>
<td>Daily Practice, Lab</td>
<td>Students will understand, calculate, and apply the following concepts: atom, nucleus, Coulomb’s Law, magnetic fields, electric fields, voltage, current, resistance, series circuits, and parallel circuits.</td>
</tr>
<tr>
<td>Circuit Materials (Wires, batteries, resistors, multimeters, etc.)</td>
<td>Daily Practice, Lab</td>
<td>Students will understand, calculate, and apply series and parallel circuits through constructing and measuring circuits.</td>
</tr>
<tr>
<td>Graphing Paper</td>
<td>Daily Practice</td>
<td>Students will display graphical understanding of concepts.</td>
</tr>
<tr>
<td>Rulers</td>
<td>Daily Practice</td>
<td>Students will use a ruler to support their understanding of concepts.</td>
</tr>
<tr>
<td>Calculator</td>
<td>Daily Practice, Labs</td>
<td>Students will understand, and calculate the following concepts: conversions, vector addition, free fall, gravitational potential energy, and the Conservation of Energy.</td>
</tr>
<tr>
<td>Google Document</td>
<td>Concept Overview</td>
<td>Students will create a document describing the concepts they have learned during this project.</td>
</tr>
</tbody>
</table>

Final Assessment

| Final Assessment | Daily Practice, Labs | Students will showcase their understanding of the following concepts: atom, nucleus, Coulomb’s Law, power, energy, magnetic fields, electric fields, voltage, current, resistance, series circuits, and parallel circuits. |

Public Audience

The debate will be recorded and the concept overviews will be displayed.

Stage 4 – Reflection

<table>
<thead>
<tr>
<th>Reflection Methods</th>
<th>Students will have the opportunity to use feedback to improve individual work.</th>
<th>Students will have the opportunity to use feedback to improve individual work.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual feedback will be provided daily to daily practice using keys.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual feedback will be provided to labs using keys.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual feedback will be provided to the final assessment using a key.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Team feedback will be provided to the debate plan through peer feedback and instructor feedback.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project Four Outline: Includes standards, project overview, and resources needed for the project.
Project Four Rubric: Provides the students with an expectation of the project and the teacher with an assessment tool.

Project four spans six weeks to include all of the traditional electricity and magnetism unit. Each concept in this project builds on each other starting with an atom and working its way up to parallel circuits. Electronics some would argue is an essential piece of daily life therefore the students will continuously throughout the project connect back to the debate. Quizzes and the formative assessment are spaced roughly every two weeks to allow for individual assessment data. Though there is only one lab in this project, there are hands on opportunities nearly every day to ensure the students are applying their understanding of concepts.
Project Four Calendar: The calendar provides the students and teacher with an expectation of what is done each day including due dates.

Sample Content Lesson

The sample content lesson included provides a lesson plan, notes, and a practice sheet for the students to complete during the span of the class period. The lesson provided allows for a teacher to see what it looks like for students to discover atoms and Coulomb’s Law through a simulation. After completing the notes in pairs, the students then individually complete the
practice to showcase their understanding of the concepts. The teacher provides feedback to the practice and returns it to the students to allow for growth.
Elementary Particles

<table>
<thead>
<tr>
<th>Definition</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equal in magnitude to the charge of a proton or electron.</td>
<td>$e = 1.6 	imes 10^{-19}$ C</td>
</tr>
</tbody>
</table>

Our Example

3e, 4e, 7e

Your Example(s)

Law of Conservation of Charge

Definition

In a closed, isolated system, the total charge of the system remains constant.

Changes within the system may be transferred, but charge is neither created or destroyed.

Our Example

- A negatively charged object is brought near a neutral object, the object will separate.

Your Example

- Neutral Wall

Coulomb’s Law

Definition

The magnitude of the electrostatic force that one point charge exerts on another point charge is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.

Equation / Units

$$F = \frac{k \cdot q_1 \cdot q_2}{r^2}$$

Graphically

- **Our Example**
 - Calculate the electrostatic force that a small sphere, A, possessing a net charge of $+3 \times 10^{-10}$ C exerts on another small sphere, B, possessing a net charge of $+2 \times 10^{-10}$ C when the distance between their centers is 10 cm.

 \[
 F = \frac{k \cdot q_1 \cdot q_2}{r^2} \]

 \[
 F = \frac{(8.99 \times 10^9) \cdot (3 \times 10^{-10}) \cdot (2 \times 10^{-10})}{(0.1)^2} \]

 \[
 F = 6.99 \times 10^{-7} \text{ N} \]

Your Example

A balloon with a charge of $+1 \times 10^{-6}$ C is 0.30 m away from a second balloon with the same charge. What is the repulsive force?

Have Mrs. Wharram-Santillo sign off and move onto the next piece.
Sample Project Lesson

The project lesson included provides the teacher/instructor with a lesson plan to span the class period. After completing their quiz, included in the assessments portion, the students will then individually research articles for their debate.

<table>
<thead>
<tr>
<th>Subject/Course</th>
<th>Physics 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic</td>
<td>Electronics Debate</td>
</tr>
<tr>
<td>Lesson Title</td>
<td>Debate Research</td>
</tr>
<tr>
<td>Lesson Duration</td>
<td>75 minutes</td>
</tr>
</tbody>
</table>

Lesson Objectives
- I can showcase my knowledge of what I have learned in this project thus far.
- I can research the positive effects of technology on one's health.
- I can research the negative effects of technology on one's health.

Task List
- Quiz
- Research 3 articles on positive effects
- Research 3 articles on negative effects

Materials Needed
- Quiz
- Chromebook

Sample Lab Lesson

The sample lab lesson included provides the teacher with a lesson plan and lab for the students to complete. This lab was provided because it is inquiry based and requires the students to recall on their understanding of concepts to construct different types of circuits.

<table>
<thead>
<tr>
<th>Subject/Course</th>
<th>Physics 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic</td>
<td>Electronics Debate</td>
</tr>
<tr>
<td>Lesson Title</td>
<td>Series and Parallel Lab</td>
</tr>
<tr>
<td>Lesson Duration</td>
<td>75 minutes</td>
</tr>
</tbody>
</table>

Lesson Objectives
- I can apply my knowledge of circuits to create circuits.
- I can apply my knowledge of circuits to calculate current, voltage, and resistance.
- I can use lab equipment (wires, resistors, light bulbs, multimeters) to build circuits.

Task List
- Series and Parallel Lab with partner

Materials Needed
- Series and Parallel Lab
- Wires
- Resistors
- Battery Pack
- Multimeters
- Rulers
- Calculator
Project Four Sample Lessons: The lessons above include three types of lessons: content, lab, and project. Each of the lessons include the materials needed for the lesson.
Quiz 1

Name: ____________________________

Quiz 1

Please complete all questions to the best of your ability. Be sure to include all equations, given tables/units, and answers with units.

1. Complete the following table.

<table>
<thead>
<tr>
<th>Particle</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positron</td>
<td></td>
</tr>
<tr>
<td>Electron</td>
<td></td>
</tr>
<tr>
<td>Neutron</td>
<td></td>
</tr>
</tbody>
</table>

2. A balloon with a charge of $+9.10 \times 10^{-6}$ C is 0.15 m away from a second balloon with the same charge. What is the repulsive force?

3. Draw the magnetic field lines for the following scenario.

4. What is the electrical power for a 24V, 3A circuit?

5. Determine the electrical energy at a given point on a power line carrying 1500 MW for 2 seconds.

6. Draw the electric field lines for a positive charge and a negative charge.

7. An ammeter is connected in:
 a. SERIES
 b. PARALLEL

8. A voltmeter is connected in:
 a. SERIES
 b. PARALLEL

9. A resistor of 10Ω has a potential difference of 108V. What is the current measured across the resistor?

Quiz 2

Name: ____________________________

Quiz 2

Please complete all questions to the best of your ability. Be sure to include all equations, given tables/units, and answers with units.

1. Solve the following series circuit. Determine the equivalent resistance, the total circuit current, and the voltage drop across and current at each resistor.

2. Solve the following parallel circuit. Determine the equivalent resistance, total current, total potential difference, potential difference at each resistor, and current at each resistor.
Formative Assessment

Project Four Assessments: Above are the different assessments needed for the project. Each of the assessments follow the calendar and allow for the content to be broken up along the project. The formative assessment is included to assess all concepts learned during the project.

Project Five

Project five allows for the students to utilize research strategies to understand how music can or does affect one’s mood. After researching, the students will then create a product...
that makes music and impacts one’s mood. This project will kick off by having the students listen to various types of music. While listening to the music, the students will record how they feel during the song. Through their research the students will be able to create an annotated bibliography that explains how music impacts one’s mood. Using this research, the students will get creative in the constructing of their product as to what it looks like, how it makes music, and they type of impact the music will have.

The resources for project five are for both the teacher/instructor and student alike. There is a project outline that outlines all of the standards to be addressed in the project, the entry event, a brief description of the project, student objectives, and resources necessary. To support the outline, there is a rubric that provides the students a clear idea of what to include in their annotated bibliography and musical product as well as provides the teacher with an assessment tool for the project. The calendar also provides the teacher and students with a sense of progress through the project. Students know when to complete graded assignments as well as provides dates for assessments. The sample lessons and supporting documents allow for the teacher to gain an idea of what a typical content day, lab day, and project day would look like in this curriculum. The assessments also provide the teacher a resource to assess individual progress.
Stage 1 – Desired Results

<table>
<thead>
<tr>
<th>Established Goals</th>
<th>Acquisition</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will know...</td>
<td>Students will be skilled at...</td>
<td>Understanding(s): Students will understand... Essential Questions: Students will keep considering... How does music impact one’s mood?</td>
</tr>
<tr>
<td>- I can find 5 articles that describe how music affects one's mood.</td>
<td>- Collaborating together</td>
<td>- To apply the following concepts to their research and product: pulse, types of waves, the characteristics of waves, the electromagnetic spectrum, resonance, interference, node, antinode, diffraction, reflection, and refraction.</td>
</tr>
<tr>
<td>- I can design a product that will produce music.</td>
<td>- Communicate to each other and the world</td>
<td>- How to find scholarly articles</td>
</tr>
<tr>
<td>- I will create a product that makes music.</td>
<td>- Critically think and develop the product</td>
<td>- How music scientifically affects one’s mood</td>
</tr>
<tr>
<td>- I can describe how the product should impact one’s mood.</td>
<td>- Critically think about concepts</td>
<td></td>
</tr>
<tr>
<td>- I can improve my rough drafts using feedback.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transfer

Students will be able to independently use their learning to:
- Apply their understanding of concepts to provide feedback to other groups.
- Showcase their understanding in labs and assessments.

Stage 2 – Student Evidence

<table>
<thead>
<tr>
<th>Driving Question: How does music impact one’s mood?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Artifacts</td>
</tr>
<tr>
<td>Presentations, Performances, Products, and/or Services</td>
</tr>
<tr>
<td>Annotated Bibliography of articles read</td>
</tr>
<tr>
<td>Musical Product</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Project Five Outline

Includes standards, project overview, and resources needed for the project.

<table>
<thead>
<tr>
<th>Required Resources</th>
<th>What artifact will resource specifically support?</th>
<th>How will resource support student learning toward artifact completion?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromebooks</td>
<td>Google Classroom, Labs</td>
<td>Students will use their chromebooks as a resource to all course information as well as will be used daily in class.</td>
</tr>
<tr>
<td>Google Classroom</td>
<td>Daily Practice, Labs</td>
<td>Students will understand and apply the following concepts: pulse, types of waves, the characteristics of waves, the electromagnetic spectrum, resonance, interference, node, antinode, diffraction, reflection, and refraction.</td>
</tr>
<tr>
<td>Phet Simulations</td>
<td>Daily Practice, Lab</td>
<td>Students will understand, calculate, and apply the following concepts: pulse, types of waves, the characteristics of waves, the electromagnetic spectrum, resonance, interference, node, antinode, diffraction, reflection, and refraction.</td>
</tr>
<tr>
<td>Wave generator/disks</td>
<td>Daily Practice, Lab</td>
<td>Students will understand, calculate, and apply pulse, types of waves, and the characteristics of waves.</td>
</tr>
<tr>
<td>Graphing Paper</td>
<td>Daily Practice</td>
<td>Students will display graphical understanding of concepts.</td>
</tr>
<tr>
<td>References</td>
<td>Daily Practice</td>
<td>Students will use a referer to support their understanding of concepts.</td>
</tr>
<tr>
<td>Calculator</td>
<td>Daily Practice, Labs</td>
<td>Students will understand, and calculate the following concepts: interference, reflection, and refraction.</td>
</tr>
<tr>
<td>Musical Product</td>
<td>Product</td>
<td>Students will create a product that makes music to affect one’s mood.</td>
</tr>
<tr>
<td>Final Assessment</td>
<td>Daily Practice, Labs</td>
<td>Students will showcase their understanding of the following concepts: pulse, types of waves, the characteristics of waves, the electromagnetic spectrum, resonance, interference, node, antinode, diffraction, reflection, and refraction.</td>
</tr>
</tbody>
</table>

Public Audience: The products will be displayed in the hallways.

Stage 4 - Reflection

- **Reflection Methods**
 - Individual feedback will be provided daily to daily practice using keys.
 - Individual feedback will be provided to labs using keys.
 - Individual feedback will be provided to the quiz using a key.
 - Individual feedback will be provided to the final assessment using a key.

- **Students will have the opportunity to use feedback to improve individual work.**

- **Team feedback will be provided to the annotated bibliography through peer feedback and instructor feedback.**

- **Team feedback will be provided to the musical product through peer feedback and instructor feedback.**

- **Teams will have the opportunity to improve their project work.**

Notes:

Annotated Bibliography

<table>
<thead>
<tr>
<th>Quantity of Sources</th>
<th>Reliability of Sources</th>
<th>Writing Fluency</th>
<th>APA Formatting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Little or no reliable sources are cited</td>
<td>Most annotations are lacking in completeness, thought, and/or writing quality</td>
<td>There is little or no adherence to APA format in the annotated bib.</td>
</tr>
<tr>
<td>2</td>
<td>Some sources can be considered reliable and/or trustworthy</td>
<td>Some annotations are well written but some are lacking in completeness, thought, and/or writing quality</td>
<td>There are many and/or frequent formatting errors in the annotated bib.</td>
</tr>
<tr>
<td>3</td>
<td>Most sources cited can be considered reliable and/or trustworthy</td>
<td>Most annotations are thoughtful, complete, and well written</td>
<td>There are a few formatting errors in the annotated bib.</td>
</tr>
<tr>
<td>4</td>
<td>All sources cited can be considered reliable and/or trustworthy</td>
<td>All annotations are thoughtful, complete, and well written</td>
<td>Annotated bib. is formatted correctly</td>
</tr>
</tbody>
</table>

Rating
Project Five Rubric: Provides the students with an expectation of the project and the teacher with an assessment tool.

The curriculum wraps up with the fifth project which is typically the waves unit in other curriculums. This project spans six weeks and allows for the concepts to be learned on the front end with the project work to be done on the back end. This is done in part due to the timing of the project and the end of the school year as well as it allows the groups to continue constructing their pieces over a span of days. There are two individual assessments placed in this project to showcase individual understanding in the assessment setting. The students will have a lab to work on in between the two assessments in order to showcase their knowledge as well. Throughout this project, the students will have many opportunities to have either hands on work or simulation work to apply each of the concepts.
Project Five Calendar: The calendar provides the students and teacher with an expectation of what is done each day including due dates.

Sample Content Lesson

The sample content lesson included provides a lesson plan, notes, and a practice sheet for the students to complete during the span of the class period. The lesson provided allows for a teacher to see a lesson where students use online resources and simulations to discover the characteristics of waves. After completing the notes in pairs, the students then individually complete the practice to showcase their understanding of the concepts. The teacher provides feedback to the practice and returns it to the students to allow for growth.
Names: __

What is a wave? Notes:

- Open the Wave on a String/PLET simulation.
- Ensure the simulation is on manual.
- Choose fixed end.
- Make a wave using the wrench.
- Describe how you made a wave.

Describe what happens to the wave after you let go of the wrench. Consider: size (width and depth), direction (left/right vs. up/down), how the wave acts at the end of the rope.

- Choose loose end.
- Make a wave using the wrench.
- Describe how you made a wave.

Describe what happens to the wave after you let go of the wrench. Consider: size (width and depth), direction (left/right vs. up/down), how the wave acts at the end of the rope.

- How do the waves compare when there is a fixed end versus a loose end?

- Choose fixed end.
- Make a wave using the wrench.
- Describe how you made a wave.

- Describe what happens to the wave after you let go of the wrench. Consider: size (width and depth), direction (left/right vs. up/down), how the wave acts at the end of the rope.

- Draw the wave.:

 - Describe how the green markers move. (Hint: vertically or horizontally)

 - Describe how the wave moves. (Hint: vertically or horizontally)

Have Mrs. Whitaker-Sanzillo sign off and move onto the next piece.

Now, using the resources on the Classroom, complete the following:

- What is a wave?

- What is a medium?

- What is equilibrium?

- What is a pulse?

- How did you create a pulse in the simulation?

- What does a wave transfer?

- What is a boundary?

- What is a fixed end?

- Describe what will happen when a pulse is introduced on the left end of a fixed rope.

- How do the waves compare when there is a fixed end versus no end?

- Restart the simulation.
- Select the pulse option.
- Slide the damping scale to none.
- Make a wave.
- Describe what happens when you start a wave. Consider: size (width and depth), direction (left/right vs. up/down), how the wave acts at the end of the rope.

- Increase the amplitude.
- Compared to the wave before, what do you notice about this wave?

- Restart the simulation.
- Decrease the amplitude.
- Compared to the original wave, what do you notice about this wave?

- Restart the simulation.
- Increase the pulse width.
- Compared to the original wave, what do you notice about this wave?

- Restart the simulation.
- Decrease the pulse width.
- Compared to the original wave, what do you notice about this wave?

- Restart the simulation.
- Select the Oscillate option.
- Set the amplitude to 0.75 m.
- Set the frequency to 1.80 Hz.
- Restart the simulation.
- Describe the wave.

- When the introduced pulse reaches the fixed end, what happens to the reflected pulse?

- Draw the scenario of the incident pulse and the reflected pulse.

- Which scenario in the simulation does this relate to?

- What is a free end?

- Describe what will happen when a pulse is introduced on the left end of a fixed rope.

- When the introduced pulse reaches the fixed end, what happens to the reflected pulse?

- Draw the scenario of the incident pulse and the reflected pulse.

- Which scenario in the simulation does this relate to?

- What are the two types of waves?

- What makes a longitudinal wave?

- What are some examples of longitudinal waves?
— Draw what a longitudinal wave looks like.

— What makes a transverse wave?

— What are some examples of transverse waves?

— Draw what a transverse wave looks like.

Here are the characteristics of a wave labeled.

— What is amplitude?

— What is a crest?

— What is a trough?

— What is a wavelength [A]?

— What is a compression?

— What is a rarefaction?

— What is the frequency of the wave?

— What symbol do you use for frequency?

— What are the units of frequency?

— What is the period of the wave?

— What symbol do you use for period?

— What are the units of period?

— How are frequency and period related?

Have Mrs. Wharram-Santillo sign off and move onto the next piece.

5. Label a wavelength for the following wave.

6. Label a wavelength for the following wave.

7. Indicate all intervals that represents one full wavelength.

8. Consider the diagram below in order to answer the following questions.

The wavelength of the wave in the diagram above is given by letter.

The amplitude of the wave in the diagram above is given by letter.

9. TRUE or FALSE: in order for John to hear Jill, air molecules must move from the lips of Jill to the ears of John.

10. A transverse wave is transporting energy from east to west. The particles of the medium will move.
Sample Project Lesson

The project lesson included provides the teacher/instructor with a lesson plan to span the class period. After showcasing their individual understanding, the students will then in groups research articles on how music can affect one’s mood, to be later used in creating a product.
Sample Lab Lesson

The sample lab lesson included provides the teacher with a lesson plan and lab for the students to complete. This lab was provided because it is simulation based and it provides the students with some choice in their lab completion.

<table>
<thead>
<tr>
<th>Subject/Course</th>
<th>Physics 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic</td>
<td>Music and Mood</td>
</tr>
<tr>
<td>Lesson Title</td>
<td>How do waves interact? Lab</td>
</tr>
<tr>
<td>Lesson Duration</td>
<td>75 minutes</td>
</tr>
</tbody>
</table>

Lesson Objectives
- I can apply my knowledge of waves and interference to a simulation.

Task List
- How do waves interact? Lab with partner

Materials Needed
- https://phet.colorado.edu/en/simulation/fourier
- How do waves interact lab

Name:

- How do waves interact? Lab
- Open the Fourier Making Waves PHET simulation.
- Select the Discrete tab.
- Drag the horizontal bar up and down.
- Describe what happens to the simulation when you move different bars.
- Describe what happens to the simulation when you move the bars up and down.
- Make two waves on the harmonics graph.
- Draw what the harmonics graph looks like.
- Describe what the wave graph looks like.
- Use the simulation to make a Sum Graph that looks like the graph below using only 2 harmonics. It's important to match both the x and y axes.
- Draw your Harmonics Graph.

- What waves did you use?
- What amplitude did you use for EACH wave?
- Describe what you thought about as you tried to match the graph.
- Use your thoughts from the previous questions to draw what you think the Sum Graph will look like for the harmonics displayed below.
- What amplitude did you use for EACH wave?
- Write a plan for how you could predict the sum of waves.
Project Five Sample Lessons: The lessons above include three types of lessons: content, lab, and project. Each of the lessons include the materials needed for the lesson.

Quiz 1

1. Label the following wave.

2. If the frequency of a sound wave is 500 Hz, what is the period of the wave?

3. An electromagnetic wave has a wavelength of 1 x 10^-4 m. What type of wave is this?

4. A wave with a frequency of 7.5 x 10^6 Hz has a wavelength of 2 m. What is the speed of the wave?

5. A light wave traveling at the speed of light has a frequency of 6.0 x 10^14 Hz. What is the wavelength of the wave?

6. What is one example of a transverse wave?

7. What is one example of a longitudinal wave?
Formative Assessment

Project Five Assessments: Above are the different assessments needed for the project. Each of the assessments follow the calendar and allow for the content to be broken up along the project. The formative assessment is included to assess all concepts learned during the project.
Reflective Discussion

This five project, project based learning (PBL) curriculum allows for a student centered classroom and allows the students to take ownership of their learning. Through this, students actively frame and reframe the problems in order to learn the concepts to arrive at a solution to the project. The freedom and choice provided through PBL allows for the students to take ownership of the problem and thus they gather information, generate ideas, and evaluate those ideas in a purposeful manner (Svihla & Reeve, 2016). Through each of the projects, the students are able to find a personal connection to the material in a way they take ownership of and invest in their learning. The PBL way of learning allows the students to have an overarching essential or driving question to continuously connect to, whether it be a content, lab, or project day. Hung agrees that project based learning has the students use problem solving skills in order to connect prior knowledge and current knowledge to a project (2011). The resources provided aid the teacher and student alike in order for the curriculum to meet New York State Standards as well as allow for the students to reflect, get creative, and express their learning in additional ways. While the project is group oriented, there are opportunities for individual assessment in order to gauge individual learning as well as group progress. PBL allows for students to not only develop understanding of concepts in physics but also to learn necessary skills for the workplace such as collaboration, meeting deadlines, and improving work based on feedback. Small groups were deemed effective for students’ learning especially in the areas of content integration, critical thinking, communication skills, self-directed learning, and the connection between concepts and a problem (Long & Qin, 2014). Therefore this PBL curriculum not only meets what is asked for by state requirements but also develops students into individual thinkers that will better the
future workplace.

In compiling this curriculum, it has allowed for me to reflect on my planning in order to be detail oriented. Being detail oriented in creating the resources has forced me to think about the overarching driving or essential question. In this curriculum I wanted the students to find value therefore I choose projects that apply to their daily lives in some form. By having the concepts and projects apply to their daily lives the students are more apt to invest in the project as well as persevere when times get difficult. In being detail oriented with my planning, it has allowed for me to look at the flow of the typical physics curriculum and move it around in a way that students are revisiting concepts and having the projects dictate the concepts instead of shaping labs and projects around the concepts. These big picture projects allow for students to think not only about the concepts, but also about the world around them and allows for them to begin thinking scientifically outside of the classroom through questioning and application. The rubrics and calendars reflect this because it is shaped by the project and content fills in the gaps. The lessons also show how the concepts connect back to the project by either including questions that relate to the project or by providing information the students can use in each project. The assessments allow for the teacher and student alike to gauge the individual students’ understanding of the concepts, therefore within the projects it allows for students to develop all these necessary skills as well as learn physics. McDonald agrees that by offering opportunities throughout a project for assessment, it allows for students to reflect on their learning and continue to improve (2008). The research done prior to the creation of this curriculum is also appreciated as it is nice to know that there are studies supporting a changed physics curriculum as well as all of the skills the students develop in addition to concepts in PBL. I have appreciated
rolling this curriculum out into the classroom as I have found the students are more interested and invested because they are able to be creative while learning about physics through seeing the continuous connections.
References

