10-12-2006

Absolute Values and Inequalities using TI-Calculator

Marc Coffie

The College at Brockport

Follow this and additional works at: http://digitalcommons.brockport.edu/cmst_lessonplans

Part of the Physical Sciences and Mathematics Commons, and the Science and Mathematics Education Commons

Repository Citation

http://digitalcommons.brockport.edu/cmst_lessonplans/37

This Lesson Plan is brought to you for free and open access by the CMST Institute at Digital Commons @Brockport. It has been accepted for inclusion in Lesson Plans by an authorized administrator of Digital Commons @Brockport. For more information, please contact kmyers@brockport.edu.
To check the values of an absolute value equation or inequality using your TI-83+ or TI-84+ calculator, follow these steps:

1. Isolate the absolute value (get the |……| by itself).
2. Whatever is on the left of the =, <, >, ≤, or ≥, goes into Y₁ on your calculator.
 a. If it is an absolute value expression (has |……|), this is entered into your calculator by pressing `0 (which is ≠) and the first function is abs (which stands for absolute value. Place whatever is in between the |……| exactly as you see it and close the parentheses).
3. Whatever is on the right of the =, <, >, ≥, or ≤ goes in Y₂ on your calculator.
4. Press # 6 to see if you can see where the graphs intersect.
 a. If an equality:
 i. If you can see the intersections, then you can determine the x-values where the equation is solved (evaluate them!)
 ii. If you cannot see the intersections, change your @ until you can, then see Step i. above.
 b. If an inequality:
 i. If they are asking for < or ≤, you are looking for values below the horizontal line and you will be using an and (____ < x < ____)
 ii. If they are asking for > or ≥, you are looking for values above the horizontal line and you will be using an or (x < ____ or x > ____)

Example 1:

Solve |x – 3| – 2 = 5.

1. Get |x – 3| by itself:
 |x – 3| = 7

2. Press # 6

3. Set Xmax = 12 and press %

4. You can see where the graphs intersect better now. Find the values using δ (”. $”). The values are x = ____ and x = ____.
Graph the solution of \(|x - 3| = 5 \):

\[
|3| 5 \quad x - =
\]

Example 2:
Solve: \(3|2x + 3| - 1 \leq 14 \)

1. Remember, \textit{isolate} the \(|……| \) first!
 \[
 |2x + 3| \leq 5
 \]

2. Enter the left hand side into \(Y_1 \) and the right hand side into \(Y_2 \):

3. Press \% :

\[
\text{Only } y \text{-values less than or equal to 5 are being sought! These are indicated as those } \text{under } \text{the horizontal line}!
\text{Find where the graphs intersect:}
\]

For what values of \(x \) is the graph of the absolute value (the "V"-shaped graph) \textbf{below the horizontal line}?*

Between _____ and _____. Our solution then is:

____ \(\leq x \leq ____ \) and the graph:

*Conversely, if asked \(|2x + 3| > 5 \), we would look for the values of \(x \) when the absolute value graph is \textbf{above the horizontal line}.

Practice:
Solve and graph the solution set of:

a. \(|x + 2| = 3 \)

b. \(4|2x - 1| > 8 \)

c. \(|1 - x| < 5 \)